
Towards Automated Logging for Forensic-Ready
Software Systems

Fanny Rivera-Ortiz
School of Computer Science

University College Dublin & Lero

Dublin, Ireland

Email: fanny.riveraortiz@ucdconnect.ie

Liliana Pasquale
School of Computer Science

University College Dublin & Lero

Dublin, Ireland

Email: liliana.pasquale@ucd.ie

Abstract—Security incidents can arise from the misuse of
existing software systems. Thus, appropriate logging mechanisms
should be implemented at the software level to support the
detection and investigation of security incidents. However, due
to insufficient logging, security incidents often go undetected
for long periods. Moreover, even after a security incident is
detected, there is not enough information to fully reconstruct
how an incident occurred. Insufficient logging may be due to the
limited security expertise of software developers, who may not
know what are the most critical security incidents. Also, for large
software systems and a multitude of potential misuse scenarios,
it is cumbersome to identify when and what logging instructions
should be implemented. In this paper, we propose a preliminary
idea to automate the development of “forensic-ready” software
systems. These systems can log a minimum amount of relevant
data that can be used to detect and investigate potential security
incidents. Our approach allows a security engineer to elicit a set
of potential software misuse scenarios, expressed as annotated
sequence diagrams. These diagrams are then used—together with
a control flow graph of the software system— to identify the exact
location where logging instructions should be placed and the
information they should log. Finally, logging instructions can be
injected into designated software system locations using Aspect-
Oriented Programming. We illustrate our approach using an
example of software misuse in a human resources management
software system.

Index Terms—Forensic Readiness; Forensic-Ready Software
Systems; Logging; Logging in Software Systems; Digital Foren-
sics

I. INTRODUCTION

Security incidents are increasing and threats are becoming

more diverse [1]. For example, in December 2018, Symantec

was blocking daily more than 1.3 million unique web attacks

on devices connected to the Internet [2]. For security incidents,

we refer to malicious activities that can violate either an

organization policy or a law [3]. Logs can store relevant

information such as, username, date, timestamp, description

of an event, which can shed light on how a security incident

happened [4]. Although researchers have proposed the use

of logs to detect and investigate security incidents [5], [6],

[7], [8], [9], security breaches often go undetected for long

periods, and/or it is not always possible to fully reconstruct

how an incident occurred.

The Open Web Application Security Project (OWASP) has

identified insufficient logging as one of the most critical

vulnerabilities for web applications [10]. For example, the

security breach targeting the Marriot Customer Reservation

Software System in November 2018 [11], was undetected

for four years [12] due to insufficient logging. Similarly, the

digital investigators that were tasked to reconstruct the 2013

Yahoo data breach [13] —the largest in history— were not

able to assess the real objective of the breach and identify

the offenders. Insufficient logging may be due to the limited

security expertise of software developers, who may not know

what are the most relevant security incidents, which could

occur. Also, for large software systems and a multitude of

potential security incidents, it is cumbersome to identify when

and what logging instructions should be implemented.

The notion of forensic-readiness has been proposed [14],

[15] to highlight the importance for organizations to preserve

digital data proactively (e.g., through logging), which may

facilitate detection and investigation of potential security in-

cidents. Forensic-readiness can maximise the potential to use

digital evidence, when required, whilst minimizing the costs

of an investigation. Although several approaches have been

proposed to support forensic-readiness [14], [16], [17], [18],

they mainly provide general guidelines at the organization

level [19]. They do not indicate how logging should be im-

plemented in existing software systems to collect information

about the relevant, potential security incidents.

In this paper, we propose a preliminary idea to automate

the development of “forensic-ready” software systems. These

systems can log a minimum amount of relevant data that can

be used to detect and investigate potential security incidents.

Our underlying assumption is that security incidents may arise

from the misuse of software (e.g., it may allow the illegitimate

modification of sensitive records). Our approach requires a

security engineer —who has expertise about potential secu-

rity incidents— to elicit a set of potential software misuse

scenarios, expressed as UML sequence diagrams. These are

reverse engineered by replaying the incident on the software

system. The UML sequence diagrams are then annotated with

information about the software system state that is relevant to

the misuse represented.

The annotated UML sequence diagrams are then used in

combination with a control flow graph of the software sys-

tem, to identify the exact location where logging instructions



should be placed and the information they should log. Finally,

we can instrument the software system to inject appropriate

logging instructions to designated software systems locations,

using Aspect-Oriented Programming (AOP). Automated gen-

eration of logging instructions removes from the software

developers the burden of making decisions about where to

log and what to log, to detect a set of security incidents. Note

that, while we aim to collect the minimal and relevant data,

currently, our work does not consider privacy concerns arising

from upcoming data protection regulations, such as the GDPR.

We illustrate our approach using a running example that

revolves around software for human resources management,

which allows the illegitimate approval of travel requests.

This paper is organized as follows. In Section II we provide

some background about logging and review related research

about logging in software engineering. In Section III we

motivate our approach using a running example. In Section IV

we explain our approach for supporting automated logging

for forensic-ready software systems. Finally, in Section V we

conclude the paper and discuss future research directions.

II. BACKGROUND AND RELATED WORK

A log is a collection of events. An event indicates an

occurrence of a state change in an environment [7]. For

example, an event in a web server log can indicate whether

or not a document was uploaded successfully. Logs can be

generated by different sources such as operating systems,

networks, digital devices, software systems [7]. Logs can

have different purposes, such as anomaly detection, problem

diagnosis, program verification, usage analysis, security mon-

itoring [20]. For our approach, we are interested in using logs

for security purposes to detect potential incidents determined

by the misuse of software systems.

To implement logging statements in software systems de-

velopers can use off-the-shelf libraries, such as Log4j [21]

for Java-based software systems. However, they still need to

rely on their knowledge and expertise [8] to decide: a) where

to log, i.e. the locations where logging statements should be

placed, and b) what to log, i.e. the information to be recorded

in the logging statements [20]. However, often developers do

not have expertise on how to log for security purposes, because

they may not be aware of how the software can be misused

and what information should be collected to detect potential

software misuses.

Researchers have proposed different approaches to give

suggestions to developers about where to log and what to

log, either for security and also other purposes. For example,

Fu et al. [22] performed an empirical study using two large

software systems at Microsoft to analyse the logging practices

of developers in the industry, focusing on where developers

log. In their study, they identify various categories of log

statements, half of them are used to record unexpected situa-

tions (e.g., exceptions or function return errors), and the other

half records normal execution information at critical execution

points. Also, Fu et al. found that developers decide to add

logging statements depending on exception types and context

information. These findings were validated through a ques-

tionnaire survey performed with 54 experienced developers at

Microsoft.

Zhu et al. [20] performed an empirical study with two

large software systems at Microsoft and two open-source

systems from GitHub. The purpose of the study is to develop

a logging tool, LogAdvisor, which could learn automatically

the common logging practice (e.g., where to log), from ex-

isting logging instances in the four studied software systems.

These two approaches [22][20] guide developers about where

logging should be performed, focusing on detection of run-

time errors in software written in C#. However, the logging

practices suggested in this work are not aimed to detect

security incidents caused by the misuse of software systems.

Other researchers have proposed approaches to protect log

files from tampering. Ma and Tsudik [23] propose a novel

cryptographic technique to ensure the integrity of audit logs

generated and stored on untrusted machines. Sinha et al. [24]

propose an infrastructure for secure logging that is capable

of detecting the tampering of logs by powerful adversaries

residing on the device where logs are generated. However,

this work focuses on protecting the integrity of logs but it

does not tackle the creation of logs necessary to detect security

incidents in software systems. Pinto Leite [5] assesses whether

it is possible to detect operating system intrusions from the

analysis of existing log files performed using search tools.

However, this approach relies on existing log files in Unix

Operating Systems and does not provide any suggestion to

developers about how to generate new logs inside software

systems for security purposes.

King et al. [6] assess whether general audit guidelines for

electronic health record mechanisms adequately address non-

repudiation. The authors found that only a small percentage

of event types that relevant for non-repudiation are recorded.

As a result, actions including the modification of patient de-

mographics and assignment of user privileges can be executed

without a trace of the user acting. Later, King and Williams [4]

perform an exploratory study to identify the current state of

logging practices in Health Care Systems. The authors base

their study on an existing logging guidelines catalog [25] and

existing 2014 Edition Approved Test Procedures for Health

Information Technology in the United States. The authors

define black-box test cases representing user actions that

should be logged, and define specific expected log output

based on the identified user actions. The authors observe that

after running the test cases only a small percentage of expected

log outputs are produced. King et al. [9] also performed an

empirical study with graduate-level computer science students

to evaluate whether their heuristics-driven method improves a

software engineer’s ability to identify mandatory log events in

open-source systems as compared with using existing industry

standards. Although this work [6], [4], [9] is relevant to

assess the maturity of logging practices in existing health

software systems, it does not provide explicit guidance about

how logging statements should be implemented. Moreover,

incidents and their criticality can vary depending on the



internal policies of the organization [7] and its assets. Also,

a different software system can be misused differently by

offenders. Thus, providing generic heuristics to guide logging

practices may be ineffective. Instead, the location and the

information to be recorded inside logging statements should

depend on the internal policies of the organization and the

software system itself.

Tan [15] suggests the notion of forensic readiness as the

capability of an organization to collect digital evidence from

different logging sources, to be prepared to investigate a

security incident. However, this approach suggests collecting

digital evidence from existing logs that are found in operating

systems, networks, and intrusion detection systems, without

considering logs generated by software systems. Pasquale et

al. [26] tailor the concept of forensic readiness to software

engineering as a property that encapsulates the capabilities of

the software to conduct digital forensic processes that maxi-

mize digital evidence [27] and produces evidence that satisfies

the legal scrutiny in a court of law [28]. Alrajeh et al. [19]

define a framework for evidence preservation requirements of

forensic-ready systems. This framework ensures that only the

minimum amount of data that is relevant to detect a security

incident is collected. This work [19], [26] represents a first

step towards implementing forensic-ready software systems.

However, more effort is necessary to guide the implementation

of logging statements inside software systems, to support the

detection and investigation of software misuses.

III. MOTIVATING EXAMPLE

In this section, we present a running example that we use

to motivate our approach.

Let us consider a Human Resources Management (HRM)

software system which has the following modules: 1) Em-

ployees: it allows adding, modifying, deleting and viewing

employees; 2) Users: it allows adding, modifying, deleting

and viewing users of the HRM software system and their

credentials; 3) Travel Requests: it allows creating, modifying,

approving, deleting and viewing travel requests. Furthermore,

the HRM software system has the following user levels or

roles: a) Admin: can have access to all of the modules of

the HRM software system; b) Manager: can only have access

to modules Employees and Travel Requests; c) Employee:

can only have access to module Travel Requests, and cannot

approve travel requests.

Our incident example is caused by an insider, Henry Smith,

who is the System Administrator of the HRM software system.

Henry is going on a business trip and creates a travel request

using the HRM software system, while his line manager,

Arthur Jones, is away on holiday. Henry uses his privileges

as a System Administrator to modify Arthur’s credentials and

impersonate Arthur, in order to approve his own travel request.

Fig. 1 describes the sequence of actions characterizing this

security incident.

1) Henry connects to the HRM software system with the

user level or role Admin.

2) Henry accesses the Travel Request module and creates a

new Travel Request.

3) The Travel Request is created and sent to Arthur. How-

ever, Arthur is on holidays and cannot approve of it.

4) Henry needs approval for his travel request and connects

as Admin to the HRM software system.

5) Henry goes to the Users module and modifies Arthur’s

password and exits the HRM software system.

6) Later, Henry misuses his privileges as a System Adminis-

trator because he impersonates Arthur, by connecting to

the HRM software system. The HRM software system

displays a message that: “A Manager has connected into

the HRM software system.”

7) Finally, Henry accesses the Travel Request Module,

reviews the travel request and approves it. The HRM

Software Systems displays a message: “The travel request

has been approved by Arthur Jones.”

Fig. 1. Incident example representing a misuse of the HRM software system.

This scenario represents a security incident because it

violates one of the organization’s policies, i.e. “only a manager

can authorize a travel request”. If adequate logging is not

performed, this security incident can go undetected or the

investigation about this incident may be difficult because

relevant evidence is missing to indicate the offenders’ identity

and the incident actions. Note that it is not possible to

prevent Henry from modifying users’ credentials, because he

requires this access right to perform his duties as a System

Administrator. Thus, it is necessary to augment the HRM

software system with the functionality necessary to ensure

accountability, which allows detecting software misuses and

identifying victims and offenders [29]. In other words, it

is necessary to implement logging functionalities that could

record the user actions that lead to potential software misuses.

IV. LOGGING TO DEVELOP FORENSIC-READY SOFTWARE

SYSTEMS

Fig. 2 provides a general overview of our approach, which

has three stages:

1) Incident Modelling: A security engineer, who is the one

in the organization that has security expertise, runs a soft-
ware system usage scenario that simulates the incident,

to generate an Incident Model. This Incident Model is a

UML sequence diagram that represents the steps involved



in the incident, without including the entire software

behaviour. During this stage, our approach allows the

security engineer to annotate the UML sequence diagram

including relevant information for logging, such as where

to log and what to log. The output of this stage is the

enhanced Incident Model with the annotations provided

by the security engineer.

2) Logging Instrumentation: The annotations produced by

the security engineer are used together with a control flow
diagram of the software system to determine the exact

location of logging statements and specific data that these

statements should record. This is important to ensure that

logging statements provide relevant information to detect

and investigate the incident. The output of this stage is

a file that specifies where to log and what to log in the

software system to detect the incident.
3) Logging Generation: Once the location and the informa-

tion to be stored in the log statements is determined,

our approach instruments the software system to inject

the logging statements to the designated software system

locations. This removes from the software developer the

burden of deciding where and what to log to detect

security incidents. When the software reaches the lo-

cations where logging statements are placed, a log will

be generated. Thus, the software will produce a log file
that can be analyzed to detect and investigate security

incidents.

Fig. 2. General Overview of our Approach

Now, we explain in detail the three stages of our approach.

The first stage, Incident Modelling (Fig. 2), allows a security

engineer, to run several software usage scenarios that simulate

the incidents of interest. For each incident, our approach

generates automatically an Incident Model, which is a UML

sequence diagram that only representing the sequence of

method invocations associated with the steps of the incident.

For our incident example described in (Fig. 1), a security

engineer, has to replay the steps of the incident on the HRM

software system.

To generate this initial UML sequence diagram, we took

inspiration from two approaches. Briand et al. [30] suggest

to reverse-engineer a Java Application. They create a UML

sequence diagram by instrumenting the application using

AspectJ, which is the implementation of Aspect-Oriented

Programming for Java [31], [30]. Labiche et al. [32] improve

the approach presented by Briand et al. [30] by dramat-

ically reducing the information collected at runtime. The

instrumented Java Application only collects the necessary

information about Java methods such as caller and callee

objects, method signature, class name and line number of the

call. Similarly to Labiche et al. [32], we instrument a group

of selected classes of the software system using AspectJ, to

capture the execution traces associated with the steps of the

incident. We collect the necessary runtime information about

Java methods such as caller, callee objects, method signature,

class name.

Once the initial UML sequence diagram is generated, our

approach allows the security engineer to annotate the UML se-

quence diagram, to include relevant conditions that determine

when logging is necessary and/or additional information that

should be logged. These annotations are related to entities that

exist in our software systems, such as Java Classes or database

tables. For our incident example, (Fig. 3) we will focus on step

3, which is highlighted in the rectangle. Here, we can observe

that the security engineer adds the following notes. The first

note (A) indicates that it is important to log who connects

to the software system because this allows identifying the of-

fender. In our incident example, we need to record that Henry

is the employee who connects to the HRM software system

using Arthur’s credentials. The second note (B), mentions that

is important to log whenever a user with the user level or role

Manager connects to the HRM software system. This means

that we are not interested in login operations to perform by

employees with user levels of employee or admin. The third

note (C) indicates that it is important to log whenever a travel

request changes to status Approved because at this moment a

security incident can occur. The output of this stage is a final

UML sequence diagram that contains the relevant annotations

from the security engineer about where to log and what to log

to detect the security incident.

The second stage, Logging Instrumentation (Fig. 2), re-

ceives as an input the final UML sequence diagram. Then,

our approach performs a control flow analysis of the incident,

using Soot [33], which is a Java product created by the Sable

research group from McGill University. Soot is a Java library

that can be included in a Java Application to create a control

flow diagram (CFG). In a CFD, Soot defines the entry and



Fig. 3. Stage 1: Final UML Sequence Diagram.

exit methods at every point in the graph [33]. While we are

creating the control flow diagram, we consider the annotations

from the security engineer to determine the exact location and

the specific information required in the software system to add

logging mechanisms to detect the incident. Additionally, while

determining where to log we consider the Java classes inside

the software system that are relevant such as the ones that

have access to the database and not the ones that implement

the graphical interface in the software system.

For our incident example, we illustrate the generation of

the control flow diagram for step 3 (Fig. 3), which is where

the incident occurs. Fig. 4, shows the control flow diagram

where the methods and the fields that are executed inside

the HRM software system for step 3, which is where the

incident happens. The LogIn, is the step indicated in the

Final UML sequence diagram where the user connects to the

HRM software system and it includes two methods inside the

HRM software system: getUserName (A) and getUserLevel

(B). The ChangeStatus is the other step described in the

final UML sequence diagram which corresponds when the

manager approves the travel request and it executes inside the

HRM software system just one method: save (C). Additionally,

to determine where to log and what to log, we consider

the requirements to make forensic-ready systems defined by

Pasquale et al. [26]: a) Relevance: Data preserved proactively

should be relevant to potential incident cases and able to sup-

port or refute hypotheses explaining how incidents occurred;

b) Minimality: Data preserved proactively should be minimal

and should not include any information that is unnecessary

for an investigation.

Fig. 4. Stage 2: Generating a Control Flow Diagram.

For our incident example, considering relevance and min-

imality to make our HRM software system forensic-ready,

we determined that the convenient location in HRM software

system (Fig. 5) to place logging statements to detect our

incident is the method save (C), because in this method

inside the software system, the following information can be

available to help us to detect our incident: UserName (A),

UserLevel (B), Travel Request Number, Employee Name and

Travel Request Status (C).

Fig. 5. Stage 2: Logging Instrumentation

While we are meeting the requirements of relevance and

minimality, currently our approach does not consider privacy

concerns such as GDPR.

The third stage, Logging generation, (Fig. 2) receives as

an input the file which contains information on the software

system related to where to log and what to log to detect the

incident. Our approach instruments our software system just

in the places where the incident is involved using Aspect J

to generate logs that detect the incident. We also use Log4j,

which is the Java logging framework to create logging state-

ments that generate log files. Log4j is a highly configurable

framework: It assigns levels of priorities to logs such as ALL,

TRACE, DEBUG, INFO, WARN, ERROR and FATAL; it

offers mechanisms to direct logging information to different

destinations like a database, file, console, UNIX Syslog [21]

and it allows that different types of output layouts in the logs

such as XML, HTML, text [34].

For our incident example, we receive the file (Fig. 5) (D)

that contains where to log and what to log. In this step,

our approach reads this file and creates logging statements

(Fig. 6) (A). Once, logging statements has been injected to

our HRM software system, the security engineer must run

again the HRM software system usage scenario that simulates



the incident and our approach will generate automatically a

log file (B) that detects the incident and says: ”The travel

request has been approved.” This log displays relevant fields

that provide useful information to investigate this incident

such as travel request number, the employee who requested

the travel request employee; who approved the travel request

approved by; from which computer the manager connected IP
Address.

Fig. 6. Stage 3: Logging Generation.

During the logging instrumentation stage, our aim is to

provide a practical way to make our software system to

comply with one of the security principles called: Information

Accountability defined as,”the use of information should be
transparent so it is possible to determine whether a particular
use is appropriate under a given set of rules and that the sys-
tem enables individuals and institutions to be held accountable
for misuse.” [35] Our approach, provides transparency and

accountability by generating a log file that detects a security

incident. This log file makes bad actions visible and who is

responsible to perform these actions.

Proposed Evaluation. To evaluate our work we will fol-

low an approach similar to the one proposed by King and

Williams [4]. They tested four popular health care systems

to assess whether sufficient logging was performed, to record

information about some of the most relevant software misuses.

Similarly, we aim to replay a set of relevant security incidents

on the software system instrumented with logging instruc-

tions. In other words, we will replay the message sequences

expressed in the sequence diagrams elicited during incident

modelling. Our objective is to assess relevance and minimality
of logs. To assess relevance we will verify that the logs

generated indicate the occurrence of the message exchanges

described in the sequence diagrams. We will also ensure

that logging is performed only when the logical conditions

indicated in the annotated sequence diagram are satisfied. To

assess minimality we will verify that no logging is generated

to indicate execution of operations that are not covered by

the sequence diagrams. We will also ensure that logs do not

record message exchanges that occur when the corresponding

logical condition in the annotated sequence diagram is not

satisfied. Finally, we will verify the possible downgrade in

performance introduced by logging operations. In particular,

we will compare the time to execute the security incident

scenarios in the software system instrumented with logging

with that necessary to replay the same scenario in the original

software system.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to automate

the development of forensic-ready software systems. To the

best of our knowledge, this is one of the first approaches to

propose the automated generation of logging instructions that

can cover relevant security incidents.

For future work, we aim to develop a tool implementing the

three stages that our approach (Fig. 2). We envision the first

two stages of our approach (Incident Modelling and Logging

Instrumentation) to be the most challenging. For Incident

Modelling, we will instrument a designated set of relevant

software system components with the capability to detect

methods execution. When the security incident scenarios are

simulated on the running software, those instructions will

represent the method execution as a message exchange in the

sequence diagram. To annotate the sequence diagram, it will

be necessary to define a set of entities, which characterize the

software system state, and on which the logical constraints

can be expressed. To achieve this aim, we will take inspiration

from existing work on feature identification and reverse en-

gineering of statecharts. To support Logging Instrumentation,

it will be necessary to map each message exchange in the

sequence diagram to a subset of the control flow graph; this

will allow locating the position where the logging instruction

will be injected. In this stage, it is also necessary to consider

privacy concerns such as GDPR while collecting the relevant

and minimal data to detect a security incident. We will also

consider strategies to reduce the amount of logging performed

when security incidents have overlapping message exchanges

in their scenarios.

Finally, for Logging Generation, we will add an engine

that whenever log instructions have been injected and the

software system is forensic-ready, an alert will be generated

that says we should run again our software system and a log

message detecting the incident will be displayed. Additionally,

this engine will perform a deeper analysis of the log message

generated and could also encrypt the log message.

ACKNOWLEDGMENT

This work was partially supported by Science Foundation

Ireland grants 13/RC/2094 and 15/SIRG/3501.



REFERENCES

[1] Symantec, “ISTR Internet Security Threat Report Volume
23. February 2018,” p. 89, 2018. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-
2018-en.pdf

[2] ——, “ISTR Internet Security Threat Report Volume
24. February 2019,” p. 61, 2019. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-
2019-en.pdf

[3] B. Carrier and E. Spafford, “An Event-Based Digital Forensic Investi-
gation Framework,” Digit. Forensic Res. Work., p. 13, 2004.

[4] J. King and L. Williams, “Log Your CRUD: Design Principles for
Software Logging Mechanisms,” Proc. 2014 Symp. Bootcamp Sci. Secur.
(HotSoS’14)., p. 10, 2014.

[5] J. Pinto-Leite, “Analysis of log files as a security aid,” Procedings 6th
Iber. Conf. Inf. Syst. Technol. (CISTI’11)., p. 6, 2011.

[6] J. King, B. Smith, and L. Williams, “Modifying without a trace: general
audit guidelines are inadequate for open-source electronic health record
audit mechanisms,” Proc. 2nd ACM SIGHIT Int. Heal. Informatics
Symp., p. 9, 2012.

[7] A. A. Chuvakin, K. J. Schmidt, and C. Phillips, Logging and Log
Management. The Authorative Guide to Understanding the Concepts
Surrounding Logging and Log Management., 2013th ed. Syngress,
2013.

[8] G. Rong, Q. Zhang, X. Liu, and S. Gu, “A Systematic Review of
Logging Practice in Software Engineering,” Proc. Asia-Pacific Softw.
Eng. Conf. (APSEC’17)., p. 6, 2017.

[9] J. King, J. Stallings, M. Riaz, and L. Williams, “To Log, or Not to
Log: Using Heuristics to Identify Mandatory Log Events–A Controlled
Experiment,” Empirical Software Engineering, vol. 22, no. 5, pp. 2684–
2717, 2017.

[10] OWASP, “OWASP Top 10 - 2017,” 2017. [On-
line]. Available: https://www.owasp.org/images/7/72/OWASP_Top_10-
2017_%28en%29.pdf.pdf

[11] J. Valinsky, “Marriott reveals data breach of
500 million Starwood guests,” p. 2, 2018. [On-
line]. Available: https://www.cnn.com/2018/11/30/tech/marriott-hotels-
hacked/index.html

[12] Reuters, “Over 500m accounts hit in Mar-
riott data breach,” p. 2, 2018. [Online]. Avail-
able: https://www.rte.ie/news/business/2018/1130/1014341-marriott-
data-breach/

[13] A. Taylor, “The 16 biggest data breaches
of the 21st century,” p. 11, 2018. [Online].
Available: https://www.csoonline.com/article/2130877/the-biggest-data-
breaches-of-the-21st-century.html

[14] R. Rowlingson, “A Ten Step Process for Forensic Readiness,” Int. J.
Digit. Evid., vol. 2, no. 3, p. 28, 2004.

[15] J. Tan, “Forensic Readiness,” p. 23, 2001.
[16] N. Beebe, “Digital Forensic Research: The Good, the Bad

and the Unaddressed,” p. 15, 2009. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-04155-6_2

[17] A. Pooe and L. Labuschagne, “A conceptual model for
digital forensic readiness,” Procedings 11th Work. Inf. Secur.
South Africa (ISSA’12)., p. 8, 2012. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6320452

[18] M. Elyas, S. B. Maynard, A. Ahmad, and A. Lonie, “Towards A
Systemic Framework for Digital Forensic Readiness,” J. Comput. Inf.
Syst., vol. 54, no. 3, p. 21, 2014.

[19] D. Alrajeh, L. Pasquale, and B. Nuseibeh, “On Evidence Preserva-
tion Requirements for Forensic-Ready Systems,” Proc. ACM SIGSOFT
Symp. Found. Softw. Eng., p. 10, 2017.

[20] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to
log: Helping developers make informed logging decisions,” Proc. 37th
IEEE/ACM Int. Conf. Softw. Eng. (ICSE’15)., vol. 1, p. 10, 2015.

[21] Tutorial Points, “log4j Overview,” 2019. [Online]. Available:
https://www.tutorialspoint.com/log4j/log4j_overview.htm

[22] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” Procedings 36th Int. Conf. Softw. Eng. (ICSE’14)., p. 10,
2014.

[23] D. Ma and G. Tsudik, “A New Approach to Secure Logging,” ACM
Transactions on Storage (TOS), vol. 5, no. 1, p. 2, 2009.

[24] A. Sinha, L. Jia, P. England, and J. R. Lorch, “Continuous tamper-proof
logging using TPM 2.0,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8564 LNCS,
p. 18, 2014.

[25] J. King and L. Williams, “Cataloging and Comparing Logging Mecha-
nism Specifications for Electronic Health Record Systems,” in Presented
as part of the 2013 {USENIX} Workshop on Health Information
Technologies, 2013.

[26] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh, and
A. Rashid, “Towards Forensic-Ready Software Systems,” p. 4, 2018.

[27] R. Mckemmish, “When is digital evidence forensically sound?” IFIP
Int. Fed. Inf. Process., vol. 285, p. 13, 2008.

[28] B. Endicott-Popovsky, N. Kuntze, and C. Rudolph, “Forensic readiness:
Emerging discipline for creating reliable and secure digital evidence,”
J. Harbin Inst. Technol. (New Ser., vol. 22, no. 1, p. 9, 2015.

[29] W. Benghabrit, H. Grall, J. C. Royer, and M. Sellami, “Accountability
for abstract component design,” Proc. to 40th Euromicro Conf. Ser.
Softw. Eng. Adv. Appl. (SEAA’14)., p. 9, 2014.

[30] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering
of UML sequence diagrams for distributed Java software,” IEEE Trans.
Softw. Eng., vol. 32, no. 9, pp. 642–663, 2006.

[31] Eclipse, “Introduction to AspectJ,” Asp.
Program. Guid., 2003. [Online]. Available:
https://www.eclipse.org/aspectj/doc/next/progguide/starting.html

[32] Y. Labiche, B. Kolbah, and H. Mehrfard, “Combining Static and
Dynamic Analyses to Reverse- Engineer Scenario Diagrams,” IEEE Int.
Conf. Softw. Maintenance, ICSM, p. 10, 2013.

[33] A. Einarsson and J. D. Nielsen, “A survivor’s guide to Java program
analysis with soot,” BRICS, Dep. Comput. Sci. Univ. Aarhus, Denmark,
p. 46, 2008.

[34] A. Tomar, “Logging With Log4j in Java,” 2018. [Online]. Available:
https://dzone.com/articles/logging-with-log4j-in-java

[35] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler,
and G. Jay Sussman, “Information Accountability,” Commun. ACM,
vol. 51, no. 6, p. 6, 2008.


