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Abstract—Applications that continuously gather and disclose 
personal information about users are increasingly common. 
While disclosing this information may be essential for these 
applications to function, it may also raise privacy concerns. 
Partly, this is due to frequently changing context that introduces 
new privacy threats, and makes it difficult to continuously satisfy 
privacy requirements. To address this problem, applications may 
need to adapt in order to manage changing privacy concerns. 
Thus, we propose a framework that exploits the notion of privacy 
awareness requirements to identify runtime privacy properties to 
satisfy. These properties are used to support disclosure decision 
making by applications. Our evaluations suggest that 
applications that fail to satisfy privacy awareness requirements 
cannot regulate users’ information disclosure. We also observe 
that the satisfaction of privacy awareness requirements is useful 
to users aiming to minimise exposure to privacy threats, and to 
users aiming to maximise functional benefits amidst increasing 
threat severity. 

Index Terms— Privacy, utility, selective disclosure, adaptation 

I. INTRODUCTION  
Consumers and enterprises increasingly rely on mobile and 

ubiquitous applications, such as smart phones, to satisfy their 
social and business needs. This new generation of applications 
enable users to form localised, short- and long-lived groups or 
communities to achieve common objectives. These applications 
may need to gather and disclose users’ sensitive information 
such as location, time, proximity to nearby services, and 
connectivity to other users. The exposure of such information 
in an unregulated way can threaten user privacy [1]. This calls 
for a more systematic approach for considering the privacy 
requirements of users in software applications. A representative 
class of such requirements is selective disclosure – deciding 
what information to disclose, in which context, and the degree 
of control an individual has over disclosed information [3]. 

A key determinant of selective disclosure is frequently 
changing context; e.g., changing time, location and group 
properties. These changes blur the boundary between public 
and personal spaces and may introduce unforeseen privacy 
threats [2]. Additionally, users may be unaware of when and 
for what purpose sensitive information about them is being 
collected, analysed or transmitted. This makes it even more 

difficult for users and applications to adapt in order to continue 
satisfying their privacy requirements. 

In this paper, we present an adaptive privacy framework 
that aims to support the selective disclosure of personal 
information in software applications. We follow the popular 
MAPE (Monitor, Analyse, Plan and Execute) loop [8] for 
designing adaptive applications. Our framework consists of 
models, techniques and tools, and focuses on the role of 
privacy awareness requirements (PAR) that embody three 
concerns: (i) the identification of what attributes to monitor in 
order to detect privacy threats; (ii) the discovery of such threats 
before personal information is disclosed; and (iii) a utility for 
the severity of discovered threats, as well as for the benefit that 
can be derived if associated information is disclosed. We 
suggest and demonstrate that an advantage of this approach is 
that decisions on whether or not to disclose information can be 
made based on reliable knowledge of both its cost and benefit 
to the user of the application.  

Our approach relies on software behavioural and context 
models, and the privacy requirements of users, to identify 
attributes to monitor in order to discover a privacy threat. A 
privacy threat is discovered by searching the history of system 
interactions that may affect the satisfaction of a user’s privacy 
requirements. The severity of identified threat and the 
associated benefit of disclosure are determined by analysing the 
evolving properties of generated networks emerging from 
users’ interactions. Subsequently, we investigate the relevance 
of such utility measure during the planning phase of software 
adaptation. Our approach for identifying monitored attributes 
had been implemented in an openly accessible automated 
environment [4]. In this paper, we evaluated our framework 
using a comparative study to examine the consequence of the 
satisfaction/failure of PAR during the planning phase of 
adaptive privacy. First, we showed that applications that fail to 
satisfy PAR are unable to manage privacy based on the utility 
of disclosure. Second, we showed that applications that satisfy 
PAR are able to regulate the disclosure of information with 
changing context. 

The remainder of the paper is organised as follows. Section 
II presents some related work on privacy awareness and 
adaptation relevant to our overall approach, which is then 
presented in section III. Section IV describes the models that 

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

632



we use in our approach. Section V then presents PAR and the 
associated mechanisms used to derive monitoring and utility 
measures for adaptive privacy. Section VI focuses on 
experimental evaluation of our approach. Conclusions and 
further work are presented in section VII. 

II. RELATED WORK 
The core contribution of our research is to show that 

capturing privacy awareness requirements in software systems 
can be used to better engineer adaptive privacy. In this section, 
we present a review of related work in the area of adaptive 
privacy, privacy engineering and privacy awareness upon 
which we build our approach.  

A related notion of awareness requirements was described 
by Souza et al. [5] as a class of requirements that predicate the 
satisfaction of other requirements. Albeit not focused on 
privacy, the approach has been used [7] to specify the need for 
adaptation of software systems. In this paper we tailor the 
notion of awareness requirements, and propose the use of PAR 
for adaptive privacy.  

Adaptive privacy was introduced by Schaub et al. [9] as a 
system’s ability to preserve privacy in presence of context 
changes, by providing recommendations to the user or via 
automatic reconfiguration. This reconfiguration is essential 
since the boundary delimiting the decision of a user disclosing 
or withholding information changes with context [10]. Braghin 
et al. [11] used the concept of ambient to enforce privacy in a 
changing environment. This was achieved by using policies to 
define boundaries of information disclosure. Braghin et al. did 
not consider that changes in context may determine the need to 
change attributes that need to be monitored in the application, 
nor the notion of utility. 

Privacy engineering was described by Spiekermann and 
Cranor [6] as a systematic effort to embed privacy concerns 
into the design of an application.  Following this principle, 
Kalloniatis et al. [12] proposed a methodology to build 
privacy-preserving applications. Similarly, Liu et al. [13] 
proposed a requirement-driven development methodology for 
secure and privacy-preserving applications based on the i* 
framework. Barth et al. [14] used the contextual integrity 
framework as a means to design privacy-preserving 
applications. Contextual integrity features a context model and 
a formal model that uses temporal logic to define the 
communication between two entities, and how the disclosure of 
information takes place. These methodologies and framework 
did not consider that the system can adapt during its lifetime, 
consequently the constructs for the satisfaction of privacy 
requirements can also change. 

Finally, Pötzsch [15] defines privacy awareness as an 
individual’s cognition of who, when, which, what amount, and 
how personal information about his/her activity is processed 
and utilised. Pötzsch’s view of privacy awareness helps to 
provide a set of constructs for building a context for which 
adaptive privacy can be assessed. An empirical study about the 
impact of this view of privacy awareness has been carried out 
[16]. However, privacy awareness constructs have not been 
investigated in adaptive privacy. We suggest that privacy 

awareness is critical to enable users and systems to gain 
sufficient knowledge about how to act in privacy sensitive 
situations. As they gain assurance that their privacy is broadly 
preserved and of the expected benefit of disclosure, they may 
consider forfeiting their privacy when engaging in some 
interactions.  

III. OVERALL APPROACH AND MOTIVATING EXAMPLE 
The objective for adaptive privacy is to enable applications 

to detect privacy threats with changing context, and 
subsequently carry out adaptation actions to ameliorate the 
consequences of the threat. Our approach to achieve this is 
based on the rationale that for useful adaptation to occur in 
software systems, there needs to be monitoring, analysis, 
planning and execution [8]. These activities enable software 
systems to detect at runtime the changes in the system context 
and to appropriately react to them.  

As shown in Figure 1, we propose that adaptive privacy 
firstly mandates that systems should be able to identify 
attributes to monitor in order to detect privacy threats 
(monitoring). Secondly, when privacy threats are discovered, 
systems should have an understanding of the consequence of 
the threat (analysis). It is the ability of systems to satisfy their 
monitoring and analysis needs that we characterise as PAR. 
The satisfaction of this requirement serves as a useful input into 
the system’s ability to make informed decision on information 
disclosure (planning). Finally, based on disclosure decision, 
mitigation actions can be carried out to ameliorate the 
consequence of the threat (execution). Such mitigation actions 
can involve updating the behaviour of the system, changing the 
context of operations or users carrying out explicit mediation 
actions.  

In this paper, we focus on the first three phases of the 
MAPE loop to highlight the PAR for making useful disclosure 
decisions.  Specifically, PAR are the requirements that need to 
be satisfied by a system in order to meaningfully adapt the 
privacy of its users as context changes. In this research, we 
demonstrate that the core of such requirements include: the 
ability of systems to identify attributes to monitor in order to 
detect privacy threats; the discovery of a privacy threat before 
information about a user is disclosed; and the severity of the 
threat as well as the benefit of information disclosure amidst 
the discovered threat. In this paper, we first highlight the 
models useful for satisfying PAR (Section IV), we then present 
an approach to PAR analysis based on these models (Section 

 
Figure 1 Adaptive privacy framework 
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V). Finally, we present an evaluation of the usefulness of PAR 
at the planning phase of adaptive privacy (section VI). 

 We achieve our objective using an example involving a 
track sharing application for runners and other outdoor 
activities. Similar examples of such application include 
B.iCycle (http://b-icycle.com), MyTracks (mytracks.appspot 
.com), etc.  Typically, such applications enable a group of users 
to share live GPS tracks and performance statistics with fellow 
users and other agents such as their fitness instructors and 
physicians. For this example, privacy management includes the 
capability of users to decide the limits of information 
disclosure to other users – about their current location, 
distance, age, heart rate, burned calories, weight loss, etc. 
Effective adaptive privacy requires users sharing their outdoor 
activity experience to understand information flows, weigh the 
consequences of sharing information, and make informed, 
context-specific decisions to disclose or withhold information. 

IV. MODELS FOR SATISFYING PAR 
As shown in figure 1, the three main models we use to 

enable the satisfaction of privacy awareness requirements 
include behavioural and context model, as well as a model 
representing user privacy requirements. We discuss each of 
these models in detail. 

A. Context Model 
A Context model is useful for identifying interactions that 

can occur between users, as well as the attributes of the users 
involved in achieving a common objective [17]. For adaptive 
privacy, context models represent attributes that are 
subsequently manipulated on by the software system in order to 
support the activity of the users as they interact with one 
another. The advantage of context models is their reuse for 
design of multiple systems. 

In this research, we formally define a context model as a 
tuple: CM = (D, Y, U, R, C). Where: D is a set of attributes; Y 
is a set of entities; U is a relation U: Y x Y, representing the 
association between entities, R is a relation R: D x 2D between 
attributes, where 2D is the power set of D, and C is a relation C: 
Y x 2D that associates entities to attributes.  

An instance of context model for the case study in Section 
III.B is shown in Figure 2. An entity in our model represents an 
object that can be described by a set of attributes. Attributes 
here are viewed as atomic variables that cannot be further 
decomposed. There are two kinds of entities: entities that 
characterise the environment of interaction (e.g. the Location 
entity, represented in light boxes in Figure 2), and entities 
representing roles of users in the system. As shown in the 
shaded boxes in Figure 2, we represent a set of users as agents. 
These agents interact to exchange information (attributes about 
an agent) with other agents. The agent responsible for sending 
the information is referred to as the Sender, while the receiving 
agent is the Receiver. The agent characterised by the sent 
information is the Subject. These interactions that occur 
between agents with a given role are modelled by the relation 
U. This relation also expresses how other entities relate with 

each other (e.g. Track and a Location) or between agent and 
other entities (e.g. Subject and ActivityType). 

Attributes can relate with each other as modelled in the 
inference relation R. Such interference relations are established 
rules that enable the deduction of previously unknown attribute 
from another disclosed attribute [17]. For example, the rule 
LocCords =  Ave.Speed      TrackName  StartTime, infers that 
the location coordinates of a user can be inferred from the 
disclosure of the users average speed, track name and start 
time. Another example is the rule BMI = Height  Weight. 
Finally, an entity is related to a set of attributes as expressed in 
the relation C. An example in Figure 2 is the relation between 
the entity Location and the attributes LocCords, Trajectory, and 
LocName. Generally, our approach to modelling context is 
amenable to other forms of inferences based on transitive, 
Euclidian or symmetric relations. 

B. Behavioural Model 
A Behavioural model represents the different states that an 

agent can reach, and the transitions required to enter such state. 
Formally, a behavioural model is a tuple: B = (S, E, τ). Where: 
S is a set of states; E is a set of events, where an event is 
defined by a tuple ((Dn|Y), ax, {sent | received}). In that tuple, 
Dn is a set of cardinality n, containing the attributes 
manipulated by the transition. The set Dn can be replaced by an 
entity that characterise the environment of interaction. The 
subject ax identifies the agent, the event is referred to (i.e. an 
agent with type Subject), and {sent|received} expresses if the 
attributes are sent or received by the agent respectively. 
Finally, τ is the state transition relation τ: S x E ∪  {ε}→ S. The 
occurrence of a transition with an ε-event (ε-transition) means 
that the agent that the behaviour is referred to does not send or 
receive any attribute in that transition. 

 
Figure 2 Example of a context model  
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An example of a behavioural model, represented as a 
Labelled Transition System (LTS), is shown in Figure 3. In 
Table 1, we illustrate the set of context attributes and the events 
associated to each transition of the LTS in Figure 3. For 
example, the transition t4 in Table 1 from state 3 to 4 in Figure 
3 is triggered by the event shareRaceResult. The attributes used 
by the event are shown in the right column of the table. These 
attributes are associated to the agent a1, which in our example 
is the subject. Finally the event features the sent keyword, 
indicating that t4 sends the attributes in the event.  

Table 1 also features some ε-transitions that are signified by 
the representation → ε. Also note that there can be transitions 
not associated with context attributes (example t8). For 
detecting privacy threats we focus only on the information that 
the various agents in the system may exchange. Consequently 
we consider t1, t2, t3 and t8 as ε-transitions, since they do not 
send or receive any attribute. 

C. User Privacy Requirements 
The User privacy requirements are individual expressions 

by agents to regulate the manner of information disclosure 
about their activity. We view the possible failure of a privacy 
requirement in a specific context as a privacy threat that 
triggers appropriate mitigation actions (see Section V.B).  

We build on the view presented in [10] where the privacy 
of a subject is conditioned by the subject’s (and other agents) 
past experiences and expectations of the future. In this way, we 
assume that privacy requirements are expressed as IF-THEN 
rules. The IF segment contains an event and the identity of its 
Sender or Receiver. If the event is a sent event, then a Receiver 
of the event is identified. Alternatively, if the event is a 
received event, then a Sender of the event is identified. The 
THEN part is a linear temporal logic (LTL) formula that 

captures the past experiences or future expectations of a subject 
by using past and future operators [18]. The LTL formula 
predicates about the values that attributes of the context model 
can assume, or the knowledge that can be gained by agents 
about a subject over time [19][20]. The formula, Kai daj is a 
modal representation of knowledge [20] that the agent ai knows 
the value of the attribute d about a subject aj. Examples of 
privacy requirements for the selective disclosure of a subject’s 
information can be stated as thus: 

(PR1) IF Location, a1, received, a2 
          THEN ◇p StartTime a1 < 21.00 hrs. 

(PR2) IF Weight, a1, sent, Receiver 
          THEN ◻¬KReceiver  BMIa1. 

The symbols ◇p and ◻ are the LTL operators eventually in 
the past and globally respectively as defined in Table 2. PR1 is 
active if a2 sends a specific Location attribute about the agent 
a1. In that case, the subject should have started his race before 
21.00 hrs, at least once in the past. Similarly, PR2 is active, if 
the Weight of a1 is received by any Receiver, then ¬KReceiver 
BMIa1(i.e. the Receiver does not know the BMI of a1) should 
hold globally (i.e. both in the past and in the future).  

V. ANALYSING PAR 
In this section, we describe different analysis used for the 

satisfaction of PAR based on models described in section IV. 

A. Identifying Attributes to Monitor 
For the satisfaction of PAR we first need to identify the 

attributes to monitor for the detection of privacy threats. We 
realise this by identifying the subset of attributes that are 
common to the context and behavioural model, and in the 
privacy requirement of the user. The identification process is 
composed of four steps: 
1. For each privacy requirement PRx, a couple (dx,ax) or (yx,ax) 

present in the event of the IF segment  is collected in a set 
M. Where dx and yx identify an attributes or an entity 
referenced by the event in the IF part of PRx, and ax is the 
subject in the event. 

2. For each couple (yx, ax) in M, the tuples cdx contained in the 
relation C of the context model, and featuring yx are 
selected. For each tuple cyx in C, a new couple (dj, ax) is 
added to M, where dj is an attribute in cyx. Finally the couple 
(yx, ax) is removed from M. 

3. For each couple (dx, ax) in M, the tuples rdx contained in the 
relation R of the context model, and featuring dx is selected. 
For each tuple rdx, a new couple (dj, ax) is added to M, 
where dj is an attribute in rdx. It is noted here that each dj can 
also be part of some other tuples in the relation R. In this 
case the step is repeated for those tuples.  

4. Finally, for each couple (dx, ax) in M, the behavioural model 
of the agent ax is considered. The transitions in the 
transition relation τax, that are triggered by events associated 
to dx are selected and associated to PRx.  

The output of these steps consists of the monitored attributes 
contained in the set M, and the marked transitions in the 
behavioural model of an agent that operate on monitored 

 
Figure3 A behavioural model B1 

Table 1 Attributes associated with state transitions (ti) 
(t) Event Event ∪  {ε}  
t1 establishGPSFix {LocCords, StartTime, ActivityType} → ε 
t2 recordTrack {CurrentTime, Ave.Speed, LocCords} → ε 

t3 uploadTrack {AveSpeed, TrackName, LocCords,  
StartTime, EndTime} → ε 

t4 shareRaceResult 
{AveSpeed, TrackName, LocCords,  
StartTime, EndTime, Weight}, a1, sent 

t5 sharePersonalInfo {Gender, Height, Age}, a1, sent 

t6 requestUserTrack {SubjectName}, a1, sent 

t7 viewUserTrack 
{AveSpeed, TrackName, StartTime,  
EndTime, LocCords , Weight, Height, 
Gender, Age}, a1, sent 

t8 hibernate { } → ε 
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attributes. These marked transitions identify where specifically 
in the behaviour of an agent the monitoring needs to occur. 

Considering PR1 in Section IV.C, the IF part of the 
requirement contains the event (Location, a1, received). The 
first process step adds the couple (Location, a1) to the set M. 
The second step considers those tuples in the relation C of the 
context model that include the Location entity. As showed in 
Figure 2, the tuples are (Location,LocCords), 
(Location,Trajectory) and (Location,LocName). The couples 
(LocCords, a1), (Trajectory, a1), and (LocName, a1), are then 
added to M. The third step considers the relation R in the 
context model and looks for attributes already in M also 
contained in a tuple in R. For instance, as highlighted in section 
IV.A, the LocCords attribute is included in the tuple 
(LocCords, Ave.Speed, TrackName, StartTime) of the relation 
R. Thus, the couples (AveSpeed, a1), (TrackName, a1) and 
(StartTime, a1) are added to M. The final step considers the 
transitions of the agent a1 as shown in Table 1. The transitions 
t4 and t7 are marked since they contain the attributes 
TrackName, LocCords and StartTime. 

B. Privacy Threats Detection 
Privacy threats detection is aimed at discovering if an 

interaction between agents can result in the failure of a privacy 
requirement. We define an interaction as the exchange of 
information about a subject between a sender and a receiver. 
Given the set of monitored attributes and the associated 
transitions in agent behaviours, our approach analyses the 
interaction history of the system. The outcome ascertains the 
satisfaction or failure of a given privacy requirement in a 
moment of the system’s history. In this subsection, we first 
characterise an interaction between two agents, followed by 
how a sequence of such interactions can be used to describe a 
history of the system. Finally, we demonstrate the detection of 
privacy threats based on the defined history. 
1) Characterising an interaction between two agents: An 
interaction is a single information-flow between two agents’ a1 
and a2. Formally, such flow is defined as either of the 
following: i) a couple (ts,tr), where ts is a transition (sa 
(d1,d2,…,dy, ax, sent) sb) belonging to the transition function of 
a1, and tr is a  tuple (s’

a (d1,d2,…,dy, sx, received) s’
b) belonging 

to the transition function of a2; ii) two couples (ts,ε), (ε,tr). The 
latter represents interactions where an agent sends information 
that is eventually received by a receiver in the system. We 
have assumed asynchronous interaction. It is possible that 
synchronous interaction can yield different behavioral runs 
and knowledge models 

For example, assume that in a system there exist an agent a1 
whose behavioural model is represented by B1 in Figure 3, and 
a second agent a2, whose behavioural model B2 is presented in 
Figure 4. The transition t4 in B2 is identical to the transition t4 in 
B1, and the transition t4Rec features a receive events with the 
same attributes as the event in t4. Assuming the events in B1 and 
in B2 have the subject a1 (i.e., a1 is sending information about 
itself to a2). Then the interaction between a1 and a2 is the tuple 
(t4, a1; t4Rec, a2). 
2) Defining the history of the system: A history of a system is 
a sequence of information-flows between agents in the system. 
The history keeps track in each time instant, of the predicates 
holding in that instant and the values of context attributes 
describing each subject. Formally, a history is defined as H = 
h1, h2,…, hn. Each hi ∈ [1, n] is a history step described by the sets 
(σ, ν, π), where σ = {Sa1,…, Sam} contains the states of the 
agents in the system in that history step,  ν contains the 
contextual attributes values  for each agent and π contains the 
predicates that hold in hi . In H, the transition from hi to hi+1 
signifies an interaction between two agents in the system. That 
interaction changes the states of the agents involved in the 
transition and can modify the predicates holding in the arrival 
state.  

Consider the partial history of a system involving 
interactions between a group of agents a1, a2, and a3. An 
instance of that history is shown in Figure 5. The behaviour of 
a1, a2 and a3 is as described in B1, B2 and B3 of Figures 3 and 4 
respectively. The behaviour of a3 features the transition t4Rec, 
which we assume identical to the one already introduced for a2, 
and the transition t5Rec, whose event has the same attributes as t5 
in Table 1, but is a received event. In h1 of Figure 5, the agent 
a1 is in state B1(3) as a result of uploadTrack event, while a2 
and a3 are in Idle states (i.e., B2(0) and B3(0) respectively). The 
interaction (t4,a1; t4Rec,a2) involving a1 disclosing its weight to a2, 
brings the history into h2. At this point, a2 knows the weight of 
a1 (i.e. Ka2Weighta1), since a1 has sent that attribute in t4,a1, and 
a2 has received in in t4Rec,a2. At h3, a2 sends a1’s Weight to a3 via 
interaction (t4,a2 ; t4Rec,a3). Consequently, the knowledge model 
(or what other agents know) about a1 is Ka2Weight a1 and 

 
Figure 5 Example of a history of a system involving interactions between agents A1- A3 where A1 is the subject 

 
 

 

 
Figure 4 Behavioural models B2 and B3 

t4Rec t4 

t4Rec 
 

t5Rec 
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Ka3Weighta1. Finally, when the interaction (t5,a1; t5Rec,a3), 
involving a1 disclosing its height to a3 occurs, then 
Ka2Weighta1, Ka3Weighta1 and Ka3Heighta1 hold. 
3) Discovering privacy threats from a history of the system: 
Given a history and a privacy requirement, a privacy threat is 
detected if the LTL formula in the THEN segment of the 
privacy requirement is not verified in the history. Note that 
only privacy requirements for which the IF segment matches 
the event associated with an incumbent interaction are 
considered.  

The verification of a LTL formula on a finite history has 
been introduced in literature [18] [24]. In this research, we 
extend the semantics defined in [24] to introduce a three-valued 
logic. The semantics of our logic is given in Table 2. We 
assume the formula F on H is evaluated in the current step of 
history and denoted as H,i. Defined semantics for our logic has 
the following rationale:  I) if the evaluation of a formula in the 
current instant i of the history of the system offers enough 
evidences that a formula F will be true (respectively false) in 
all the possible continuations of the history, then the formula is 
true (respectively false); II) otherwise the evaluation of the 
formula is inconclusive, and the formula will be unknown. 

If the formula evaluated is true, then the privacy 
requirements are verified and the analysis detects no threat, in 
case the formula evaluated is false, then a privacy requirement 
is violated and the analysis consequently identifies a privacy 
threat. In case the formula evaluated is unknown then our 
analysis signals a potential privacy threat. This means that 
there are not enough evidences to conclude that the privacy 
requirements are violated. Such evidences can though be 
present in the following steps of the history. Consequently our 
analysis derives a new instance of the formula, scaled of one 
step in the future, and tries and verifies the new instance in the 
next history step. 

Consider the history shown in Figure 5, also assuming the 
interactions that generated h1 and h2 have occurred. Then at h3, 
PR2 is active since its IF segment matches one of the events in 
the interaction (t4,a1; t4Rec,a2). The formula in the THEN segment 
is consequently evaluated in h3. For the formula to be verified, 
the predicate ¬KReceiverBMIa1 should hold in every previous and 
future steps of the history. Furthermore, based on the inference 
rule BMI = Height  Weight, for ¬KReceiver BMIa1 to hold, then  

¬KReceiver Weighta1 or ¬KReceiverHeighta1 should hold, where 
Receiver identifies a generic agent receiving the information. If 
we assume that the interaction (t5,a1;t5Rec,a3) has not yet 
occurred,  the predicate Ka3Weighta1 holds at h3. The 
information contained in the history up to h3 is not sufficient to 
demonstrate that PR2 will not hold in all the possible 
continuations of H, so our analysis marks it as unknown and 
signals a potential threat. The analysis will also continue to 
check the formula in the future, until further evidences can 
bring it to a conclusion. Those evidences are provided in h4, 
where Ka3Heighta1 holds.  In that step there are enough 
evidences to conclude that the condition does not hold in any 
possible continuation of H, and the analysis will consequently 
signal a privacy threat. 

C. Determining Utility of Disclosure 
When a privacy threat is discovered, the decision to 

disclose or not disclose needs to be made. A vital input into this 
decision making process is the insight on the severity of the 
discovered threat and the benefit of disclosure amidst the 
discovered threat. The utility of disclosure is then the 
difference between benefit of disclosure and the severity of 
discovered privacy threat. In this research, we determine the 
utility of disclosure using the properties of the network 
generated from the history of the system. For example, the 
shaded section of Figure 6 is the network generated using the 
history of the system for a1-a3 shown in Figure 5. Here, an 
undirected and unweighted network is assumed. In this 
network, nodes are agents, while a link between nodes is a 
relation formed between an information sender and a receiver. 
Specifically, we determine the benefit of disclosure based on 
the clustering coefficient of the generated network, while the 
severity of the threat is determined based on the degree 
centrality of receiving agent.  

The clustering coefficient of an agent in a network is the 
ratio of the number of actual links between the agent’s 
neighbours and the possible number of links. The overall 
clustering coefficient of the network is then an average of the 
clustering coefficients of each agent in the network. Clustering 
coefficient typically describes the concentration of the 
neighbourhood of an agent in the network. Such concentration 
has been used as an indicator to show the extent to which an 
agent shares common properties and/or plays similar roles with 
other agents in the network [21]. For example, assuming a1, a2 
and a3 have interacted with other agents as demonstrated in 
Figure 6. The dotted link illustrates a scenario where the agent 
a1 is to disclose the attribute x to aR1 or aR2.  The clustering 

 
Figure 6 a1 disclosing x to aR1 or aR2 having different clustering and 

centrality properties 

Table 2 LTL semantics on the system history H 
Expression Semantics 

H,i ⊧ F F holds at the step i of H 
H, i ⊧ LastTime F F holds at the step i-1 of H 
H, i  ⊧ ◇p F ∃ 1 ≤ j ≤ i and H, j ⊧ F 

H, i  ⊧ ◻p F ∀  1  ≤  j  ≤ i  and  H,j  ⊧ F 

H, i  ⊧ Next F Unknown and Check H, i+1 ⊧ F 
H, i  ⊧ ◇f F True if H, i ⊧ F. 

Otherwise Unknown  and Check  H, i+1 ⊧ ◇f  F 

H, i  ⊧ ◻f F False if H, i  ⊭ F. 

Otherwise Unknown and Check H, i+1 ⊧ ◻f  F 

H, i  ⊧ ◻F False if  (H, i  ⊭ F) ∨ ∃ (1 ≤ j < i  and H, j  ⊭ F) 

Otherwise Unknown  and Check  H, i+1 ⊧ ◻F 
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coefficient of a1 if the attribute x is sent to the receiver aR1is 
0.5. Alternatively, the clustering coefficient if sent to aR2is 0.3. 
Thus, using the clustering coefficient as a measure of benefit 
for the network in Figure 6, it will therefore be more beneficial 
if a1 discloses x to aR1 compared to aR2. 

The degree centrality of an agent describes the number of 
direct links that an agent has with other agents. Generally, it 
has been shown that an agent with higher degree centrality can 
gain access to and/or influence over others. Such agents can 
also serve as a source or conduit for larger volumes of 
information exchange with other agents [21]. Thus, a receiver 
with higher degree centrality stands a greater chance of 
disseminating inappropriately disclosed information to more 
agents, hence representing a higher threat severity. Using the 
illustration in Figure 6, the degree centrality for aR1 is 0.25 and 
hence it represents a lesser threat severity, compared to aR2 
which is 0.5. Given that a potential privacy threat is 
distinguished from a privacy threat that can be proven from 
existing history, a damping factor is applied to the former. Such 
factor ensures that a potential privacy threat does not have 
equal measure of severity compared to a realised one. 

Overall, the utility of disclosure is then difference between 
benefit and threat severity. The utility of disclosure if a1 
discloses the attribute x to aR1 is 0.25 while that of aR2is -0.2. 
Thus, depending on a utility value, users or systems may 
consider disclosing or withholding specific information. In this 
manner, they are either forfeiting or reinforcing their privacy 
when engaging in some interactions.  

VI. EVALUATION OF PAR IN DISCLOSURE DECISION MAKING 
We conducted an evaluation to demonstrate if PAR can be 

a useful input to the planning part of  adaptive privacy. One 
way of evaluating this outcome is to use specific adaptation 
strategies that regulate an acceptable utility, threat severity or 
benefit thresholds for a subject. The effectiveness of these 
strategies can then be checked for scenarios where the 
failure/satisfaction of PAR are realised. 

Table 3 illustrates the set of strategies used in this study. 
Case1 represents an agent that does not satisfy PAR. For this 
case, an agent initiates privacy management without an 
understanding of threat severity, benefit or the ultimate utility 
of disclosure. Case2 represents an agent satisfying PAR and 
triggering the adaptation action that terminates all interactions 
with other agents once the utility reaches the value 0. At this 
point, for |H| >0, privacy threat severity (TS) equals benefit. 
Practically, Case2 represents an agent disassociating itself from 
a group objective because the benefit does not exceed the 
privacy threat resulting from information disclosure. For Case3, 
the agent satisfies PAR and triggers the adaptation action 
similar to Case2 once TS is greater than a specific threshold 
(Thi). Practically, Case3 represents an agent disassociating itself 
from a group objective irrespective of the benefit derived, 
because a specific threat severity level is reached. Finally, 
Case3 is similar to Case2, but the adaptation action triggered is 
not to disclose information to other agents with specific 
properties. For this evaluation, the property we examine is the 
number of neighbours (n) of the receiving agent. Practically, 

Case4 is a strategy that does not stop the increase in threat 
severity, but curbs the rate at which the increase occurs, while 
still deriving some utility. 

Based on the four highlighted cases, we conduct an 
experimental study that evaluates the following research 
questions: RQ1: What is the difference between an agent that 
does not satisfy PAR (i.e. No-PAR) and an agent that does (i.e. 
With PAR)? To address this question, we consider Case1 (No-
PAR) and Case2 (with PAR). RQ2: Is there any advantage that 
Case3 has over Case4 or vice-versa. Considering that Case3 and 
Case4 manipulate on varying Th and n values, the aim is to 
understand the impact of these variations on utility. Finally, 
RQ3 investigates the impact that the number of agents in a 
group has on the utilities of Case3 and Case4. 

A. Experimental Setup 
In this evaluation we used Netlogo [23] (a programmable 

modelling environment for simulating natural and social 
phenomena) to simulate interactions across nine groups of 
agents. The number of agents in each group ranged from 10-
250. This choice was inspired by studies on the average 
number of links that an agent has with other agents in typical 
group networks where agents are human [25]. The behaviour of 
each agent is a variant of the behavioural model shown in 
Figure 3. During the simulation, multiple interactions can occur 
over a single link. Thus the actual number of links is less than 
the total number of simulated interactions. Each group had a 
single subject with multiple senders and receivers. Thus, every 
interaction either involved a subject sending information about 
itself, or another agent information sending information about 
the subject. Also, the simulation of interactions followed the 
power-law distribution, which is typical in group networks 
where a small number of agents have very large number of 
links. Our simulation of interactions and subsequent networks 
were tailored to closely resemble mobility based networks 
where links arise mainly from spatial or temporal proximity of 
agents. 

For each group, we associated PR2 (Section IV.C) to the 
selected subject. We assumed a conservative scenario where 
every interaction resulted in a privacy threat. Furthermore, we 
fixed Th = 0.12, and evaluated Case3 for Th, Th*2, Th*4, Th*6, 
Th*8 and Th*10 respectively. Similarly, we fixed n =8, and 
evaluated Case4 for n, n+2, n+4, n+6, n+8 and n+10 
respectively.  

B. Findings and Lessons Learned 
The topology metrics for each group network based on the 

above experimental setup are shown in Table 4. TSno-PAR refers 

Table 3 Adaptation triggers and disclosure decision 

 Trigger Action  
Case1 No-PAR - 

Case2 Utility = 0 Terminate all disclosure 

Case3 TS > Thi Terminate all disclosure 

Case4 Utility = 0 Terminate only messages to receiver with 
more than n  neighbours in the network 
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to privacy threat severity where PAR are not satisfied. The 2nd 
and 3rd columns show that the number of agents in a group 
increases with increasing links between agents. Similarly, the 
number of interactions required for privacy threat severity to 
reach 1 for a scenario where PAR are not satisfied, increases 
with the number of agents. This is because given the power-law 
and increasing the number of agents in a group, one would 
expect a decrease in the degree centrality of most receiving 
agents, and hence in the associated privacy threat severity. In 
the remaining of this subsection we used this result to address 
each of the designated research questions. While the results 
generated for the different groups were related, for space 
limitations, we show results for only group 7 in RQ1 and RQ2. 
In RQ3, we then demonstrate the impact of the number of 
agents in a group on the effectiveness of adaptation actions.  

1) RQ1 findings: Figure 7 shows the plots of threat severity, 
benefit and utility for Case1 and Case2 for a subject in Group 
7. In both cases, it can be seen that the benefit of information 
disclosure reaches a tipping point and gradually decreases 
thereafter. This outcome is explained considering that the 
more a subject engages in interactions and form new links 
with other agents, the less likely the neighbours of the subject 
will have links to each other. This results in a lower benefit 
measure. In contrast, given No-PAR for Case1, the threat 
severity continues to increase, with a continuous decrease in 
the utility. This continuous increase in severity results from 
the receiving agent having more neighbours with increasing 
interactions. For Case2 with PAR, as shown in Figure 7, the 
subject is able to curb the continuous increase in threat 
severity.  

In summary, the core distinction between an agent with 
PAR and No-PAR is that agents with PAR can regulate 
information disclosure. Such regulation is based on tolerable 
levels of threat severity or on the minimum expected utility. 
For Case2, this has been achieved by terminating all subsequent 
interactions at the point where utility reaches 0. However, 
terminating all subsequent interactions can be viewed as an 
extreme risk-averting behaviour which can hinder agents from 
reaping the benefit of disclosure. Thus, a more appropriate 
scenario falls somewhere between extreme cases of risk-taking 
and averting. We investigate these scenarios in RQ2 with 
varying values of Th and n. 

 
2) RQ2 findings: Figure 8 illustrates the impact of a subject 
terminating information disclosure to receiving agents with n 
neighbours in a group (Case4). It is noticed here that 
increasing n results in tending utility towards what we 
observed in the No-PAR case. Again, this outcome can be 
explained by the assumption of power-law distribution where 
a smaller number of receiving agents will have high n. Thus, 
at higher n values this adaptation action is less effective. The 
outcome for Case3 involving a different adaptation action is 
depicted in Figure 9. Here, all interactions are terminated 
when TS is more than a specified Th. For this case, the subject 
does not need to wait until utility = 0. As a result, the utility 
curves associated with the two lower thresholds (Th1 and Th2) 
outperform the utility of Case2. Similar to Case4, as Th values 
increase, the utility for the subject tends towards the No-PAR 
utility.  

To achieve a better understanding of the statistical 
significance of the results generated for varying Th and n 
values, we ran a non-parametric ANOVA test. The choice of 
non-parametric ANOVA was because the utility data of 
different cases did not have Normal distribution. Figure 10 
shows the Box plots for the different utility function of Case1 - 
Case4. The Kruskal-Wallis test showed significant difference 
between these cases, but pair-wise comparison revealed that the 
three higher Th values for Case3 (i.e., Th4, Th5 and Th6) are not 
statistically different neither from No-PAR nor from each 
other. Conversely, Th1, Th2 and Th3 are statistically different 
from No-PAR and each other. This outcome suggests that for a 
risk-averting behaviour, Th1 is better than Th2 and Th3. 
Conversely, for a risk-taking behaviour, Th3 is the limit 

Table 4 Simulated network topology metrics              

Group No. gents No. links No. Interactions (TSnoPAR = 1) 
1 10 29 58 
2 25 104 238 

3 50 282 697 
4 75 521 1339 

5 100 788 2065 
6 125 1095 2911 
7 150 1441 3874 

8 200 2189 5968 
9 250 3170 8611 

            

 
Figure 8- Utility of terminating disclosure to agents with different number of 

links (n) – agents=150. 
 

No. Interactions 

 
 

Figure 7- A plot of threat severity (TS), Benefit (B - Clustering Coeff.) and 
Utility (U) vs history of system (hi) for agents=150. 
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(compared to Th4, Th5 and Th6) for which if applied, then some 
benefit can be derived without being similar to No-PAR. 

Again, the two higher n values for Case4 (i.e., n5 and n6) are 
not significantly different from neither No-PAR nor from each 
other. Conversely, n1 – n4 are statistically different from No-
PAR as well as each other. This outcome suggests that for a 
risk-averting behaviour, n1 is better than n2 – n4. Conversely, 
for a risk-taking behaviour, n4 is the limit (compared to n5 and 
n6) for which if applied, then some benefit can be derived 
without reaching the No-PAR utility. 

 In summary, for a risk-averting behaviour, it can be said 
that lower values of Th or n are better than higher values. In 
contrast, for a risk-taking behaviour, the intension is for a 
subject to accommodate the decline in the utility and the 
increase in threat severity in order to leverage on the benefit. 
Then there is a limit to which such a subject can risk 
information disclosure, over which it is as good as the subject 
not satisfying PAR. 
RQ3 findings: Table 5 shows a comparison of Case3 and Case4 
against No-PAR for different groups considered in this study. 
This table illustrates that for groups 1, 2 and 3 consisting of 
10, 25 and 50 agents respectively, none of the adaptation 
actions in Case4 was significantly different from the No-PAR. 
From groups 4 to 9, the outcome showed a different trend of 
decreasing numbers of n that was not significantly different 
from the No-PAR case. The rationale for this outcome is 
derived from the view that for a specific n value, and as the 

number of agents in a group increases, there is also an 
increased likelihood of the number of receiving agents whose 
neighbours would be more than n. Conversely, for a smaller 
group of agents (groups 1, 2 and 3), smaller values of n are 
required to achieve a statistically different utility. A pattern 
similar to Case4 is also roughly observable for Case3 that 
involves varying Th values across groups. As such, for groups 
with smaller number of agents, smaller values of Th are 
required to achieve a statistically different utility. 

 The key observation is that n and Th are mutable factor 
that change depending on the number of agents in the group. 
As the number of agents in a group increases, the resulting 
utility of an adaptation action for a specific n and Th also 
become more significantly different from No-PAR. 

VII. CONCLUSION AND FURTHER WORK 
In this paper, we presented an adaptive privacy framework 

that enables the runtime selective disclosure of personal 
information. Our approach is based on the rationale that for the 
appropriate disclosure of information from a sender to a 
receiver, some privacy awareness requirements (PAR) need to 
be satisfied. Such requirements underpin the ability of 
applications to identify the attributes to monitor in order to 
detect privacy threats, the discovery of a privacy threat before 
information is disclosed, and an understanding of the utility of 
disclosure, which includes the severity of the threat as well as 
the benefit of disclosure in the face of the discovered threat. 

We evaluated our framework from two viewpoints. First, 
we showed that applications that fail to satisfy PAR are unable 
to regulate information flow based on the utility of disclosure. 
Secondly, we showed that applications that satisfy PAR can 
regulate the disclosure of information. We demonstrated the 
usefulness of PAR that crosscuts a spectrum, where at one end 
is risk-aversion (with the aim of user applications minimising 
exposure to privacy threats), and the other end is risk-taking 
(with the objective of maximising benefit amidst increasing 
threat severity and declining utility). Although we used a single 
motivating example to evaluate our approach, we suggest that 
our approach is generalisable to other domain where disclosure 
can be modelled as the transfer of information between agents.  

The key benefit of our approach to engineering adaptive 
software is that PAR can serve as useful input into the planning 
and execution phases of the adaptation cycle. PAR are useful 

 

 
Figure 10- Box plots of different Th and n values - agents=150 

Table 5 Case3 and Case4 vs no-PAR for different groups 

 Not significantly different from No PAR 
Group Case4 Case3 

1 n1, n2, n3, n4, n5, n6 Th3, Th4, Th5, Th6 
2 n1, n2, n3, n4, n5, n6 Th3, Th4, Th5, Th6 
3 n1, n2, n3, n4, n5, n6 Th3, Th4, Th5, Th6 
4 n2, n3, n4, n5, n6 Th4, Th5, Th6 
5 n3, n4, n5, n6 Th4, Th5, Th6 
6 n4, n5, n6 Th4, Th5, Th6 
7 n5, n6 Th4, Th5, Th6 
8 n6 Th4, Th5, Th6 
9 - Th4, Th5 

            

 
 

Figure 9- Utility of terminating disclosure to all agents when threat severity is 
more than a certain threshold (Th) 

 

No. Interactions 
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for planning as it provides an understanding of the utility of 
information disclosure. We also expect PAR to be useful for 
execution. This is because it provides a rationale for software 
models that need to change in-order to preserve privacy. While 
we have not focused on the semantics of such change, we 
expect it to involve an adaptation manager carrying out some 
actions. These include altering or removing disclosure 
behaviour by updating the LTS representation of the 
application. Other execution approaches may include refining 
user privacy requirements, or learning new inference rules in 
the context model to subsequently enable better adaptation. 
Another benefit of our approach to software engineering is that 
it relies on a minimal subset of general software engineering 
models. For example, there is no need to explicitly model a 
malicious user in order to discover privacy threats. 

Generated interaction networks used in the evaluation of 
our approach closely resemble random networks that are 
typical of mobile applications. Further work will be required to 
generalise our approach to other forms of networks such as the 
small-world or networks where the power-law distribution is 
not assumed. Furthermore, our framework is extensible to 
utilise richer models of context. Thus, we aim to investigate 
other models that addresses possible uncertainties that can be 
introduced by mobility and changing context. The wider 
question that our framework poses is that of engineering 
existing legacy application into an adaptive privacy protecting 
one. In future work, we plan to investigate an aspect-oriented 
and component based approach to adaptive privacy that is 
amenable to legacy systems. Finally, we intend to investigate 
the notion of entropy and transience in adaptive privacy. This is 
necessary because the sensitivity of information may decay 
over time for a number of reasons. These include the transient 
nature of the knowledge of human agents, and the disclosed 
information becoming out of context or more inaccessible over 
time. 
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