
1

Incidents Are Meant for Learning, Not Repeating:
Sharing Knowledge About Security Incidents in

Cyber-Physical Systems
Faeq Alrimawi, Liliana Pasquale, Deepak Mehta, Nobukazu Yoshioka, Bashar Nuseibeh

Abstract—Cyber-physical systems (CPSs) are part of many
critical infrastructures such as industrial automation and trans-
portation systems. Thus, security incidents targeting CPSs can
have disruptive consequences to assets and people. As incidents
tend to re-occur, sharing knowledge about these incidents can
help organizations be more prepared to prevent, mitigate or
investigate future incidents. This paper proposes a novel ap-
proach to enable representation and sharing of knowledge about
CPS incidents across different organizations. To support sharing,
we represent incident knowledge (incident patterns) capturing
incident characteristics that can manifest again, such as inci-
dent activities or vulnerabilities exploited by offenders. Incident
patterns are a more abstract representation of specific incident
instances and, thus, are general enough to be applicable to various
systems - different than the one in which the incident occurred.
They can also avoid disclosing potentially sensitive information
about an organization’s assets and resources. We provide an
automated technique to extract an incident pattern from a specific
incident instance. To understand how an incident pattern can
manifest again in other cyber-physical systems, we also provide
an automated technique to instantiate incident patterns to specific
systems. We demonstrate the feasibility of our approach in the
application domain of smart buildings. We evaluate correctness,
scalability, and performance using two substantive scenarios
inspired by real-world systems and incidents.

Index Terms—Cyber-physical systems, Security incidents,
Smart building, Knowledge Sharing

I. INTRODUCTION

Cyber-Physical Systems (CPSs) combine computation,

communication, and physical processes [1] to augment phys-

ical systems with enhanced capabilities, such as real-time

monitoring and dynamic control. Nowadays applications of

CPS can be found in many domains such as industrial control

systems, transportation systems and smart buildings. Thus,

security incidents targeting CPSs can have disruptive conse-

quences to their users and the assets they manage.

CPSs enable complex interactions between cyber and physi-

cal components. For example, in a smart building, a rise in the

measured temperature of a room can trigger a digital process

to issue a command to an air conditioner to start cooling the

room. Interactions between cyber and physical components

can extend the attack surface of a CPS, giving malicious in-

dividuals more opportunities to cause harm since they can ex-

ploit vulnerabilities from either component to impact the other.

Thus, the number of security incidents targeting CPSs has

increased over the past years [2]. For example, in the Ukrainian

power grid incident [3], offenders used spear phishing to gain

a foothold in the distribution companies’ computer network.

Then, they gained access to the power grid network, to infect

and disable some physical devices (e.g., workstations, serial-

to-Ethernet) that control the electricity distribution, causing

disruption to the normal operation of the grid. Previously,

in the German steel-mill incident [4], offenders used spear

phishing to gain a foothold in the corporate network, and then

gain access to the plant’s network in order to shutdown the

blast furnace and the alarm system.

Some aspects of prior incidents often tend to re-occur. For

example, in the Ukrainian power grid incident an offender

obtained access to a private network using spear phishing. A

similar activity also happened in the German steel-mill inci-

dent. Thus, sharing knowledge about prior security incidents

can help organizations being more prepared to prevent, miti-

gate, or investigate future incidents [5]. However, supporting

information sharing about security incidents is still a key open

challenge [6], [7]. Besides, knowledge about security incidents

targeting CPSs is limited.

In this paper we propose a novel approach to enable repre-

sentation and sharing of incident knowledge across different

organizations. To enable sharing, we represent incident knowl-

edge as incident patterns that capture incident characteristics,

which can occur again, such as vulnerabilities exploited by

offenders. Incident patterns are a more abstract representation

of incident instances. Therefore, they can be general enough

to be applied to various systems, beside the one in which

the incident occurred. They can also avoid revealing poten-

tially critical information about an organization’s assets and

resources (e.g., physical structure of a building or vulnerable

devices). As incident activities can target or exploit system

components, we also provide a representation of the system

where an incident occurs. This includes cyber and physical

components, their structure, dependencies and dynamic behav-

ior. We provide two meta-models to represent incidents and

cyber-physical systems, respectively.

We propose an automated technique to extract an incident

pattern from a specific incident instance. The extraction tech-

nique explores the inheritance hierarchy in the cyber-physical

system meta-model to abstract specific system characteristics

described in the incident instance. To understand how an

incident pattern can manifest again in other CPSs, we propose

an automated technique to instantiate incident patterns to

different systems. The instantiation technique uses a repre-

sentation of the dynamic behavior of the system - expressed

2

as a labeled transition system - to identify the behavior traces

matching the activities in the incident pattern. We demonstrate

the feasibility of our approach in the application domain

of smart buildings. We evaluate correctness, scalability, and

performance using two substantive scenarios inspired by real-

world systems and incidents.

The novelty of our work lies in the combination of three

key elements:

• Incident patterns to support representation and sharing of

incident knowledge across different organizations.

• Automated technique to extract an incident pattern from

a specific incident instance, in order to facilitate sharing

of incident knowledge and avoid disclosing sensitive

information about an organization’s assets and resources.

• Automated technique to instantiate an incident pattern

to specific cyber-physical systems, in order to facilitate

assessment about whether and how prior incidents can

manifest again.

The remainder of this paper is organized as follows. In

Section II, we motivate the need to share information about

incidents in CPSs. In Section III, we provide an overview of

our approach to share incident knowledge. In Section IV, we

present, respectively, our system and incident meta-models.

In Section V, we describe the incident pattern extraction

technique. In Section VI, we illustrate the incident pattern

instantiation technique. In Section VII, we present an eval-

uation of both techniques, and discuss the results and threats

to validity. In Section VIII, we compare our approach with

related work. Finally, in Section IX, we conclude and present

future work.

II. MOTIVATING EXAMPLE

Our motivating example is centered on the ACME com-

pany that operates across three different smart buildings: a

Research Center, a Warehouse, and a Manufacturing Plant.
This is depicted in Fig. 1. The plan of the 2nd floor of the

Research Center consists of a Server Room, a Control Room,

and a Toilet. The Server Room contains a Fire Alarm, an

air conditioning unit (HVAC), and some Servers, while the

Control Room contains a Workstation. The whole building

is equipped with Smart Lights. The HVAC, the Fire Alarm
and the Smart Lights communicate with the Workstation
through the Installation Bus network, which adopts the KNX

protocol [8].

Unfortunately, an incident occurred in the Research Center.

An offender reached the 2nd floor, entered the Toilet, and

connected his/her Laptop physically to the Installation Bus by

replacing the Smart Light (SL1). After that, s/he was able to

detect the HVAC and connect to it. Detection of the HVAC was

possible by eavsdropping on the messages exchanged through

the installation bus, which are not encrypted [9]. Then, the

offender sent a targeted Malware to disable the HVAC (e.g.,

exploiting the vulnerabilities present in Trane HVACs [10]).

This subsequently caused the Servers to heat up. The incident

actions are listed at the bottom of Fig. 1.

Upon the discovery of the incident, security administra-

tors wrote a report describing how the incident occurred.

Fig. 1: The ACME Company Motivating Example.

Afterwards, to assess whether similar incidents activities can

manifest in the other buildings, security administrators have to

identify existing vulnerabilities brought by cyber and physical

components in those buildings. This may require to examine

the physical structure of each building, as well as the software

and network configurations of the digital devices within the

buildings.

Security administrators may face the following challenges.

First, the approach each organization follows to perform

incident reporting is not standardized [11]. Although different

templates (e.g., [12]) have been proposed to identify what type

of information incident reports should contain, the description

of an incident is usually provided in natural language [13],

without following a specific structure. Understanding how

an incident can re-occur in a different system is arduous. It

would require a security administrator to examine the incident

description manually, and speculate on all possible ways in

which incidents activities can be performed. Second, incident

reports may not represent incident activities in CPSs, which

can exploit vulnerabilities and dependencies between cyber

and physical components. Finally, incident reports may contain

sensitive information (e.g., internal network structure) that

cannot be disclosed to third parties [11].

Therefore, it is necessary to provide an approach to rep-

resent incidents in a more structured form, which can cap-

ture activities that can use cyber and physical components.

Moreover, it is necessary to provide a modeling technique to

represent incident information in an abstract form, in order

to avoid disclosing specific sensitive information about the

system in which the incident occurred. Finally, automated

techniques should be provided to analyze incident knowledge

and assess whether and how prior incidents can re-occur. This

can help organizations be more prepared to prevent, mitigate or

investigate future incidents by, for example, updating security

3

and auditing measures depending on potential incidents.

III. SHARING INCIDENT KNOWLEDGE

To address the challenges highlighted in the previous sec-

tion, we propose our approach to share incident knowledge

across different systems and organizations. Our approach

provides representations of incidents and the cyber-physical

systems in which they can occur. It also provides two auto-

mated techniques. One technique extracts potential incident

patterns from specific incidents. The other technique instanti-

ates incident patterns in CPSs, in order to assess whether and

how an incident can reoccur. Our approach is shown in Fig. 2.

Fig. 2: Our approach for sharing incident knowledge.

After an incident occurs a security administrator operating

within an organization (A) can represent (1) the activities

of an incident (incident instance). These activities refer to

specific cyber and physical system components (e.g., SL1 or

Bus Network of the ACME Research Centre). Subsequently, an

incident pattern can be extracted (2) from an incident instance

automatically. An incident pattern includes activities that refer

to a more abstract representation of cyber-physical system

components. For example, activity “enter toilet” in the inci-

dent instance can be abstracted to “enter targetRoom” in the

incident pattern. This avoids disclosing specific information

indicating, for example, location of smart devices exploited in

the incident. Differently from the traditional notion of pattern,

in this paper an incident pattern is extracted from a single

incident instance. However, an incident pattern can potentially

be instantiated in various ways in different systems.

The incident pattern is subsequently stored (3) in a shared

repository. Each time the repository is updated, a set of

subscribed organizations is notified. They can access incident

patterns and instantiate (4) them automatically w.r.t a set of

specific CPSs they manage. This allows system administrators

to assess all possible ways in which incident patterns can re-

occur again in those CPSs. For example, the incident pattern

extracted from the Research Center incident can be instantiated

to another organization’s CPS (e.g., CPS1 managed by orga-
nization B). Incident activity “connect to targetCompDevice”

in the incident pattern is instantiated to 2 subsequent activities

“connect laptop to busNetwork” and “connect laptop to
fireAlarm”.

In our previous work [14], we briefly introduced our ap-

proach for sharing incident knowledge and provided a prelimi-

nary description of the models adopted to represent an incident

and the cyber-physical system in which it can occur. In this

paper, we extend our previous work, by describing in more

detail our models and how they can be used to represent cyber-

physical systems, incident instances and patterns. Differently

from our previous work, in this paper we also provide two

automated techniques to support extraction and instantiation

of incident patterns, respectively. Finally we evaluate our

techniques on a substantive, large-scale example.

IV. MODELING SYSTEMS & INCIDENTS

To model incidents in cyber-physical systems, we provide

two meta-models. First, a cyber-physical system meta-model

represents CPSs where an incident can occur, focusing on

their components, structure and dynamic behavior. Second,

an incident meta-model is proposed to represent incident

patterns and instances. The full meta-models are implemented

as Eclipse plugins that are available publicly1.

A. Modeling Cyber-Physical Systems

We tailor our system meta-model to represent smart build-

ings, which are a specific application domain of CPSs. So far

the analysis of security incidents in smart buildings [9] has

received little attention and this has motivated our focus on

this domain.

A simplified version of the smart building meta-model is

shown in Fig. 3. Note that this meta-model can be extended

to represent other time-discrete CPSs in domains different than

smart buildings. Our meta-model includes Assets, which can

represent physical and cyber components in a smart building.

Each Asset instance is identified by its name. PhysicalAssets
represent any physical component, such as Actor, Physical-
Structure, and ComputingDevice. Actor can be a person in

the smart building such as a Visitor or an Employee. Physical-
Structure represents part of the smart building physical layout,

which includes Room and Floor. ComputingDevice represents

any computing device, such as Laptop, FireAlarm, SmartLight,
Server, HVAC, and Workstation. DigitalAssets represent any

digital data that can be processed or software that can be

installed in a digital device inside the smart building. A

DigitalAsset can also represent a network (e.g., BusNetwork)

installed in the smart building.

An instance of the smart building meta-model representing

the Research Centre of the ACME Company is shown in

Fig. 4. For example, sl1 and toilet are instances of SmartLight
and Room, respectively.

To model the structure of a CPS, the meta-model also repre-

sents containment and connectivity relations between compo-

nents. The containedAssets relation denotes the Asset(s) con-

tained in a PhysicalAsset. The containedDigitalAssets relation

1https://tinyurl.com/yd9k6zhe

4

Fig. 3: Smart Building meta-model (simplified).

denotes the DigitalAsset(s) contained in another DigitalAsset.

For example, as shown in Fig. 4, sl1 is contained in the toilet,
sl2 and the workstation are contained in the controlRoom, and

sl3, the fireAlarm, the server and the hvac are contained in the

serverRoom. Connection represents connectivity between two

components (asset1 and asset2) and can be described by a type
(e.g., wired). Digital connectivity between assets (e.g., through

a network) is expressed as a DigitalConnection, while physical

connectivity between assets (e.g., two rooms are connected

through a door) is expressed as a PhysicalConnection. For

example, as shown in Fig. 4, the toilet and the serverRoom
are connected physically to the hallway, while sl1-sl3, the

fireAlarm and the workstation are connected physically to the

busNetwork. The workstation is also connected digitally to the

hvac and the fireAlarm, to which it sends control commands.

Fig. 4: Research Center instance (simplified).

To specify the dynamic behaviour of a CPS, the meta-

model allows representing Actions. For example, Actions can

represent a person entering a room or connecting his/her laptop

to a computing device via the bus network. An Action is

expressed as a re-writing rule, where a portion of the system

matching a pre-condition is re-written with the sub-system

represented in the post-condition. Pre- and post-conditions are

expressed using a custom notation inspired by Bigraphical

Reactive Systems (BRS) [15], which allows representing cyber

and physical components and their connectivity and contain-

ment relations.

Table I represents pre- and post-conditions of actions “en-
ter Room”, “connect Laptop to BusNetwork physically”, and

“connect Laptop to ComputingDevice via BusNetwork”.

TABLE I: Pre- & post-conditions of some actions of the smart

building example.

enter Room
pre: (Room1{phys} ·Actor) | (Room2{phys})
post:Room1{phys} | (Room2{phys} ·Actor)
connect Laptop (Lap) to BusNetwork (Bus) physically
pre: ((Actor · Lap) | Dev{phys}) || Bus{phys}
post:((Actor · Lap{phys}) | Dev) || Bus{phys}
connect Laptop to ComputingDevice (Dev) via BusNetwork
pre: Actor · Lap{phys} || Bus{phys} || Dev{phys, dig}
post:Actor · Lap{phys, dig} || Bus{phys} || Dev{phys, dig}

The precondition of Action “enter Room” means that two

different rooms (Room1 and Room2) are connected physically

({phys}) and are contained in the same physical structure (see

operator ’|’), for example, the same floor. An Actor is inside

Room1 (see operator ’.’). As a result of Action “enter Room”,

the Actor, who was previously contained in Room1, is now

inside Room2.

Action “connect Laptop to BusNetwork physically” indi-

cates that an actor establishes a physical connection of a laptop

to a bus network by replacing a computing device, which

was previously connected to the bus network. As indicated

in the pre-condition, an Actor who carries a laptop (Lap)

(see operator ’.’) is initially co-located (’|’) with a computing

device (Dev). This device is in turn connected physically

({phys}) to the bus network (Bus). Also Actor and Dev
are not necessarily contained in the same location as Bus
(see operator ’||’). In the post-condition Lap is connected

physically to Bus, replacing Dev.

Action “connect Laptop to ComputingDevice via BusNet-
work” indicates that an actor connects a laptop digitally

to a computing device through the bus network. The pre-

condition indicates that an Actor carries a laptop (Lap) (see

operator ’.’). The laptop (Lap) and the computing device

(Dev) are connected physically ({phys}) to a bus network

(Bus). The post-condition indicates that Lap establishes a

digital connection (dig) with Dev. Note that Actor, Bus
and Dev are not necessarily contained in the same physical

structure (see operator ’||’).
CPS components can be defined at different levels of ab-

straction in the meta-model. Level 3 includes concrete entities,

while Levels 1 and 2 include more abstract entities. A CPS,

such as the one represented in Fig. 4, is described by instances

5

of the most concrete entities of the smart building meta-model

(i.e. those in Level 3 in Fig. 3).

B. Modeling Incidents

Fig. 5: Incident meta-model (simplified).

We take inspiration from Crime Scripts to model security

incidents. Crime Scripts are used in criminology to describe

the sequence of activities of physical crimes [16]. Despite their

adoption for understanding the incident commission process

and identifying incident prevention techniques, to the best of

our knowledge, there exists no model that can be used to

represent and process a Crime Script systematically. Thus, we

have developed a meta-model that captures the characteristics

of Crime Scripts. To represent incidents that occur in CPSs

our meta-model extends the original use of Crime Scripts
to refer to cyber components of the system explicitly. Our

meta-model can be used to represent incident instances and

incident patterns. An incident instance represents an incident

that has occurred or may occur in a specific CPS, such as

the Research Center in our motivating example. Therefore,

incident instances can only refer to concrete CPS entities.

An incident pattern is a more abstract representation of an

incident, which can occur in various CPSs sharing common

characteristics. Thus, incident patterns can only refer to entity

types (classes) of the CPS meta-model.

A simplified version of the incident meta-model is shown

in Fig. 5. A CrimeScript entity is characterized by a name
and a category. A category indicates whether the incident

model represents an incident INSTANCE or a PATTERN. A

CrimeScript includes a set of partially ordered Scenes, which

represent the phases of a security incident (e.g., preparation

and execution scenes). Each scene, in turn, includes a set of

Activities. An Activity is characterized by a name and is linked

to the next subsequent activities in chronological order.

An IncidentEntity represents any entity that can be relevant

to an incident, such as an offender or an asset, and it is

characterized by a unique name and a type. An IncidentEntity
can —not necessarily— play a role within an Activity. It can

be a Target, a Resource, an ActivityInitiator, or a Location. A

Target represents a component that can be harmed during an

incident. It is characterized by a status (e.g., open, connected),

and a version that indicates a version of a product (e.g.,

Windows 10). A Resource represents a component needed to

perform an activity, such as a laptop or a malware, and is also

characterized by a model. An Activity can be performed by

an ActivityInitiator that may also play a role (e.g., offender,

victim). A Location represents a place where an activity or

a sequence of activities of a scene is performed. A Location
can be physical or digital, depending on the IncidentEntity it

refers to. A physical location represents a place in the physical

space (e.g., a Room). A digital location represents a place in

the cyberspace, such as an IP address or a digital folder. A

Location’s port defines an access point to the location (e.g.,

a door for a physical location or port 80 for a digital loca-

tion). We also allow specifying connectivity and containment

relations of an IncidentEntity that are relevant for an incident

instance. An IncidentEntity can contain other entities through

relation containedEntities; the containing entity —if present—

is represented through relation parentEntity. A Connection
represents a physical or digital connectivity relation between

two IncidentEntity objects.

An incident activity is also characterized by a pre- and a

post-condition, which represent how a portion of the system

evolved or should evolve as a consequence of the execution of

the activity. Pre- and post-conditions are expressed by referring

directly to incident entities and their connectivity and contain-

ment relations. More precisely, a Condition refers to a set of

incident entities (IncidentEntityRef). An IncidentEntityRef is

characterized by the name of the IncidentEntity it refers to

and some of the incident entities it contains (containment),
which are relevant to the activity. An IncidentEntityRef can

also refer to a set of connections (ConnectionRef), where the

referred incident entity is involved and which are relevant to

the activity. A ConnectionRef refers to a Connection using

its name. In the rest of this section we describe how to use

the incident meta-model to represent incident instances and

patterns.

1) Modeling Incident Instances: When the incident meta-

model is used to represent an incident instance, the incident

entities created to characterize the activities should refer to

specific system Assets in a cyber-physical system. Thus, the

name and type of incident entities should refer respectively to

the name (e.g., sl1) and the class (e.g., SmartLight) of an asset

in a cyber-physical system. Containment and connectivity rela-

tions between incident entities should also refer to containment

and connectivity relations between the corresponding system

assets or actors in the cyber-physical system.

The incident instance model of the Research Center incident

is depicted in Fig. 6. We only show details of two of the in-

cident activities (“enter toilet” and “connect laptop to hvac”).

Activity “enter toilet” has a visitor as an ActivityInitiator, who

has the role of an offender. This Activity happens in room

hallway (Location) and targets room toilet (Target). As shown

in the model of the research centre in Fig. 4, the toilet also

contains a smart light (sl1), which is connected physically to

the bus network. Activity “connect laptop to hvac” aims to

establish digital connectivity between a laptop and an hvac. It

is still performed by the visitor inside the toilet. It targets the

hvac and uses the laptop as a resource to establish connectivity.

6

Fig. 6: Incident instance model of the Research Center incident.

Fig. 7: A potential incident pattern model extracted from the incident instance model.

As shown in the model of the research centre in Fig. 4, the

hvac is connected physically to the bus network.

An activity in an incident instance has a direct mapping

to an action in the model of the cyber-physical system. Pre-

and post-conditions of an activity are the same as pre-and

post-conditions of the corresponding action but component

types are replaced with concrete component instances from

the system. Containment, physical and digital connectivity

relations expressed in the pre- and post-conditions of an action

are also replaced with concrete relations expressed in the

system model. For example, as shown in the left side of Fig. 8,

activity “connect laptop to busNetwork” is associated with

action “connect Laptop to BusNetwork physically”, which is

specified in Table I. Actor, Lap, Dev and Bus in the action

pre- and post-conditions are replaced by visitor, laptop, smart

light sl1, and busNetwork, respectively. Physical connectivity

{phys} is replaced by physBus, i.e. the physical connectivity

between the busNetwork and sl1. As shown in the right side

of Fig. 8, activity “connect laptop to hvac” is created based on

action “connect Laptop to ComputingDevice via BusNetwork”

specified in Table I. Actor, Lap, Bus, and Dev are replaced

by visitor, laptop, busNetwork, and hvac, respectively. Physical

connectivity {phys} is replaced by physBus, i.e. the physical

connectivity between the busNetwork and the hvac, while

{dig} is replaced by a new digital connectivity between the

laptop and the hvac, which is created as an effect of the action.

If a security administrator needs to define an incident activity

that does not have any corresponding action in the system

model, s/he will first need to create a corresponding action in

the system model. Then, s/he can associate the incident activity

with this newly created action. Our approach assigns random

names to incident activities in order to distinguish them from

other activities in the same incident model. However, for

reasons of clarity, in this paper we use intelligible names to

identify incident activities.

2) Modeling Incident Patterns: When an incident pattern is

represented, an incident entity can only refer to abstract system

components that can match more than one concrete component

in a cyber-physical system. Thus, in an incident pattern model

the name of incident entities is just a random unique name

(e.g., “compDev”), and the type refers to an entity type in the

smart building meta-model (e.g., ComputingDevice).

A potential incident pattern model can be extracted from

the incident instance model shown in Fig. 6. Such an incident

pattern model is shown in Fig. 7. Each Incident Entity refers

to a more abstract entity (e.g., in Level 2 in the cyber-physical

system meta-model). For instance, incident instance sl1 which

has the type SmartLight is abstracted to an incident entity

that has type ComputingDevice. Activities of an incindent

instance can also be merged. For example, the two activities of

7

Fig. 8: Mapping the system actions “connect Laptop to BusNetwork physically” and “connect ComputingDevice via
BusNetwork” to the incident instance activities “connect laptop to busNetwork” and “connect laptop to hvac” respectively.

Fig. 9: Merging the incident instance activities “connect laptop
to busNetwork” and “connect laptop to hvac” into the incident

pattern activity “connect to targetCompDevice”.

the incident instance model, “connect laptop to busNetwork”

and “connect laptop to hvac”, are abstracted to one activity,

“connect to targetCompDevice”. In this case, the pre-condition

is set to the pre-condition of the first activity (“connect to
busNetwork”) in the sequence. The post-condition is set to the

post-condition of the last activity (“connect to hvac”) in the

sequence. Pre- and post-condition of the new activity, “connect
to targetCompDevice” are shown in Fig. 9. The process we

follow to extract an incident pattern is described in Section V.

V. INCIDENT PATTERN EXTRACTION

In this Section we describe the technique we propose to

extract an incident pattern from an incident instance, auto-

matically. Our technique includes two steps: merging and

abstraction.

A. Merging

We map a sequence of activities in the input incident

instance to an activity pattern, which represents an activity

that is usually performed by an offender. In our approach, we

define manually a set of activity patterns based on the Com-

mon Attack Pattern Enumeration and Classification (CAPEC)

catalog [17]. CAPEC provides more than 500 common attack

patterns. An attack pattern describes, textually, the common

attributes and approaches that an offender can exploit to harm

or weaken a target system. To create our activity patterns,

we analyze the CAPEC attack patterns and model them as

activities of the incident meta-model. We only focus on attack

patterns that can materialize in cyber-physical systems, partic-

ularly in smart buildings. Table II shows the name, category,

and abstraction level of the attack patterns that we use to model

activity patterns. CAPEC abstraction levels include Standard,

which is a description of an attack technique (e.g., collect

data from common resource locations 2), and Meta, which

is an abstract characterization of an attack technique (e.g.,

Excavation3).

TABLE II: Modeled CAPEC attack patterns.

Name Category Level
Collect Data from Com-
mon Resource Locations

Collect and Analyze In-
formation

Standard

Sniffing Attacks Collect and Analyze In-
formation

Standard

Content Spoofing Engage in Deceptive In-
teractions

Meta

Establish Rogue Loca-
tion

Engage in Deceptive In-
teractions

Standard

Exploitation of Trusted
Credentials

Subvert Access Control Meta

Physical Theft Subvert Access Control Meta

Using Malicious Files Subvert Access Control Standard

Functionality Bypass Abuse Existing Func-
tionality

Meta

Email Injection Inject Unexpected Items Standard

Hardware Integrity At-
tack

Manipulate System Re-
sources

Meta

A CAPEC attack pattern is characterized by a description,

2https://capec.mitre.org/data/definitions/150.html
3https://capec.mitre.org/data/definitions/116.html

8

an indication of its severity, a set of resources that offenders

require to perform the attack, some prerequisites that should

be met, and some related weaknesses that must be present

in the target system —at least one of them— to perform

the attack successfully. Weaknesses are usually represented

using ids of relevant CWE (Common Weakness Enumeration)

vulnerabilities. For example, Table III shows attack pattern

“Collect Data from Common Resource Locations”.

TABLE III: Collect Data from Common Resource Locations.

Description
An adversary exploits well-known locations for resources for the
purposes of undermining the security of the target. Even when the
precise location of a targeted resource may not be known, naming
conventions may indicate a small area of the target machine’s
file tree where the resources are typically located. For example,
configuration files are normally stored in the /etc directory on
Unix systems. Adversaries can take advantage of this to commit
other types of attacks.
Severity
Medium
Prerequisites
The targeted applications must either expect files to be located at
a specific location or, if the location of the files can be configured
by the user, the user either failed to move the files from the default
location or placed them in a conventional location for files of the
given type.
Resources Required
None
Related Weaknesses
CWE-ID: 552. Files or Directories Accessible to External Parties

The activity we create to represent attack pattern “Collect

Data from Common Resource Locations” is shown in Fig. 10.

We first read and examine the description of the attack pattern

to identify some keywords that can be useful to define the

activity initiator, location, target and/or resource. For example,

keyword “adversary” indicates that the activity is performed

by an actor playing the role of an Offender. Keyword “target”

refers to the activity target, which in this case is a File
inside a SystemDirectory. Resources can be identified from the

resources required and/or the description of the attack pattern.

In this example, although no resources are necessary, we still

consider important for an attacker to use a computing device in

order to access a file. Thus, in our activity pattern we define a

resource to be a ComputingDevice. Relations between entities

can also be identified from the description of the attack pattern.

For example, we represent a containment relation between the

File and the SystemDirectory.
Second, pre- and post-condition of the activity pattern are

identified by examining the prerequisites, weaknesses, and

description of the attack pattern. The prerequisites and weak-

nesses allow us to identify the pre-condition. In this example,

from the prerequisites, we identify that the targeted File should

be contained in the SystemDirectory. From the weaknesses

we identify, as part of the pre-condition, that the offender

should have accessibility to the location, which we translate

as connectivity between the offender’s ComputingDevice and

the SystemDirectory. The post-condition is inferred from the

description. In this example, we identify that the offender’s

ComputingDevice should contain the targeted File. Finally, the

severity of the attack pattern is assigned directly to the severity

attribute of the activity pattern. In this case, the severity of the

activity pattern is set to MEDIUM.

In addition to CAPEC attack patterns, we create pattern

activities based on common actions that occur in a smart

building, such as movement between rooms, and connectivity

to a network. For example, we create an activity pattern that

expresses the activity of digitally connecting one’s computing

device (e.g., laptop) to another computing device (e.g., HVAC)

through physical connectivity to a network. The created activ-

ity pattern is shown in Fig. 11. This activity pattern allows the

merging of the two activities shown in Fig. 9.

During merging we identify sequences of activities in an

incident instance that satisfy the pre- and post-condition of

an activity pattern. The first activity in the sequence should

satisfy the pre-condition of the activity pattern, while the last

activity in the sequence should satisfy the post-condition of

the activity pattern. A (pre- or post-)condition in the activity

pattern matches a (pre- or post-)condition of an activity in

the incident instance if the entity types (classes) referred in

the condition of the activity pattern are types or super-types

of the concrete system components referred in the incident

instance. Also, the containment and connectivity relations

between incident entities —referred in the condition of the

activity pattern— should be included in the condition of the

matching activity of the incident instance. To implement the

matching we convert the pre- and post-conditions of an activity

pattern and the activities in the incident instance as Bigraphs

and we re-use the matching functionality implemented in

LibBig [18], a publicly available library supporting various

manipulation functionalities for Bigraphical Reactive Systems.

To perform the merging we look for an activity in the inci-

dent instance whose pre-condition matches the pre-condition

of the activity pattern. If a match is identified, we look for

a subsequent activity in the incident instance whose post-

condition matches the post-condition of the activity pattern. If

a match for the post-condition of the activity pattern is found,

then the activity sequence, which begins from the activity that

matches the pre-condition of the activity pattern and ends with

the activity that matches the post-condition of the pattern, is

kept.

Because different activity patterns can match an overlap-

ping set of activities in an incident instance, we propose a

strategy to prioritize the activity patterns to be selected for the

matching. More precisely, we aim to maximize the number

of activity patterns that match a non overlapping sequence of

activities in an incident instance, and that have a maximum

severity. We implement the selection of the activity patterns

as a constraint solving problem, using Choco [19].

After the matching between each selected activity pattern

and a sequence of activities in the incident instance is com-

pleted, each sequence is replaced by a new activity. The pre-

condition of the new activity corresponds to the pre-condition

of the first activity in the matching sequence. While the post-

condition of the new activity corresponds to the post-condition

of the last activity in the matching sequence. Activities in the

incident instance that are not part of any sequence of activities

matching an activity pattern remain unmodified.

9

Fig. 10: “Collect data from common resource location” activity

pattern.

B. Abstraction

After merging, we replace the system components (assets or

actors) referred by each incident entity in the incident instance

with a more abstract representation. We define heuristics to

decide the level of abstraction for the system components.

Generally, we abstract a component’s type to one level up

(i.e. to a more general type) in the system meta-model. For

example, a component of type SmartLight, level-3, is ab-

stracted to ComputingDevice, level-2. Similarly, we abstract a

component’s Connections. For example, a BusConnection can

be abstracted to a DigitalConnection. In other cases, instead,

we keep the same level of abstraction. For example, a specific

room (e.g., hallway) will be simply referred to as a Room.

Determining the appropriate level of abstraction for different

component types is a challenging task, and there is no silver

bullet solution. Our rules are derived from our experience in

using our incident meta-model to represent various incidents

in smart buildings. However, incident patterns can also be

reviewed by a security administrator, who can adjust the level

of abstraction for selected system components, if needed.

During abstraction, the name of a component is obfuscated.

For example, toilet becomes room1. Moreover, only selected

properties of a component are kept. Currently, property selec-

tion is performed manually by a security administrator. Finally,

the category of the CrimeScript is changed from INSTANCE

to PATTERN.

VI. INCIDENT PATTERN INSTANTIATION

In this section we present the technique we propose to

instantiate an incident pattern onto a specific cyber-physical

system, in order to assess whether and how such pattern can

manifest again. We exemplify our technique by instantiating

the incident pattern represented in Fig. 7 to the research center

smart building shown in Fig. 4. The inputs, steps, and output

of the technique are shown in Fig. 12. It includes two steps:

asset matching and trace matching.

Fig. 11: “connect digitally to computingDevice” activity pat-

tern.

Fig. 12: The inputs, steps, and output of the instantiation

technique.

A. Asset Matching

During asset matching we identify the concrete assets in the

cyber-physical system that match the abstract assets referred

by the incident entities in the incident pattern. To achieve this

aim, we define a matching criteria that takes into account the

type and other attributes of an incident entity, and also its

containment and connectivity relations.

First, an incident entity “type-matches” an asset in a cyber-

physical system if the type of the incident entity is a superclass

or the same class of the asset. For example, incident entity

compDev of type ComputingDevice in Fig. 7 can potentially

match sl1, fireAlarm, and server in Fig. 4. These assets are of

classes SmartLight, FireAlarm, and Server, respectively, which

extend ComputingDevice (see Fig. 3). If an attribute is retained

in an incident entity during extraction of the incident pattern,

that attribute should be assigned the same value in the matched

asset. For example, if attribute status is retained in compDev
and is assigned value OPEN, then all matched assets should

have their status set to OPEN.

Second, for each containment relation specified for a given

incident entity, it is necessary to verify whether the assets

that type-match the incident entity, in turn, contain assets

that type-match the contained incident entities. The matching

can be exact or partial. An exact matching implies that

the asset type-matching a given incident entity should only

contain assets type-matching exactly those contained by the

incident entity. For example, if exact matching is required

for incident entity targetRm that contains compDev, the asset

10

(e.g., toilet) matching targetRm should also contain exactly an

asset type-matching compDev (e.g., sl1). A partial matching

implies that an asset type-matching a given incident entity

can contain additional assets, other than those type-matching

the ones contained by the incident entity. For example, if

partial matching is required for the incident entity targetRm
that contains compDev, it is sufficient that the assets matching

targetRm (e.g., toilet, serverRoom, controlRoom) contain at

least one asset that type-matches compDev.

Finally, similar to containment relations, also connectivity

relations should be matched; matching can be exact or partial.

For example, if exact matching of connectivity relations is

required for compDev, which has one PhysicalConnection
physBus, then all matched assets (e.g., sl1, sl2, hvac) should

have exactly one connectivity relation that type-matches phys-
Bus. If partial matching is required, then all matched assets

(e.g., sl1, sl2, hvac) should have at least one connectivity

relation that type-matches physBus. In this case, as shown in

Fig. 4, sl1, sl2, hvac have one connectivity relation that type-

matches (partially and exactly) physBus.

Fig. 13: Asset matching performed between the incident

pattern, shown in Fig. 7, and the system model, shown in

Fig. 4.

Fig. 13 (1) shows for each incident entity in the incident

pattern the matching assets in the research center, assuming

that partial matching is required for containment and connec-

tivity relations. If at least one incident entity in the incident

pattern cannot be matched to any asset, the incident pattern

cannot be instantiated onto a given cyber-physical system.

Otherwise, as shown in Fig. 13 (2), we generate sets of

assets (1..N) matching each incident entity in the incident

pattern. For example, [visitor, laptop, sl1, busNetwork, toilet,
workstation, hallway] is one of the set of assets matching,

respectively, the following incident entities [actor, laptop,

compDev, digNetwork, targetRm, targetDev, hallway].

B. Trace Matching

During trace matching we identify a set of behavior traces

(sequence of actions) of the cyber-physical system that satisfy

the pre- and post-conditions of the activities in the incident

pattern. Pre- and post-conditions need to be instantiated using

the set of assets matching the incident entities, identified

during asset matching.

Fig. 14: Matching an incident pattern activity conditions (pre

& post) against a LTS.

To achieve this aim, for each activity of an incident pattern,

we identify the system states that satisfy their pre- and post-

conditions. To do so, for each set of assets matching the

incident entities, we replace each incident entity with its

matched asset in the set, as shown in Fig. 14 (1). Then we

encode pre- and post-conditions of activities in an incident

pattern into a Bigraph, as shown in Fig. 14 (2). Each node

of the Bigraph corresponds to an incident entity referred to

in the pre- or post-condition. More precisely, the node control

(i.e. type) corresponds to the class of the asset matching the

incident entity referred to in the pre- or post-condition. For

example, incident entity compDev, which is referred in the pre-

and post- condition of activity “connect to targetCompDevice”

matches asset sl1 among others in Fig. 13; thus, it is replaced

with a Bigraph node having control set to SmartLight. After

that, we create containment and connectivity relations between

these nodes based on existing relations in the incident pattern

activity. For example, containment between the visitor and the

laptop and connectivity between sl1 and the busNetwork are

maintained in the Bigraph.

Finally, we match the pre- and post-conditions of the inci-

dent pattern activities encoded as Bigraphs to system states.

This is shown in Fig. 14 (3). We represent system states and

transitions (action execution) using a Labeled Transition Sys-

tem (LTS), which is generated from the smart building model.

To do this, we transform the structure of the smart building

(components and their connectivity and containment relations)

represented using the system model to a Bigraph [20]. We also

encode the actions defined for the smart building to a set of

reaction rules. We then use BigraphER [21], a software tool

that implements bigraphs and their dynamics, to generate the

LTS automatically.

Once the LTS is generated, we identify possible traces

(sequences of states) matching the pre-and post-condition of an

11

incident activity, also preserving their order. The first state of

the sequence satisfies the pre-condition of the matched incident

activity, while the last state of the sequence satisfies the post-

condition of the activity. We use LibBig [18] library to perform

Bigraph matching.

We implemented a Breadth First Search (BFS) algorithm to

identify a trace. We use BFS since it allows us to identify all

unique and non-cyclic traces between two states in an LTS. By

unique traces we mean that none of the traces identified from

an initial state covers the same system states, i.e. a state cannot

be visited twice. This avoids identifying repetitions of certain

sequences of actions (partial-traces), hence, filtering out traces

that are redundant. An example is shown in Fig. 15 (a), in

which the trace (1→2→4→6→8) is skipped since state (6)

is already visited via the trace (1→3→6→8). In other words,

considering two alternative ways to reach state 6 (from state 3
or from states 2→4), we only consider the shortest one to keep

the number of traces generated low. Similarly, to reduce the

number of irrelevant traces, we modified the BFS algorithm to

skip traces that contain an intermediate state, which satisfies

the initial pre-condition of the incident. We do this since the

intermediate state will be used (or was used) as an initial state

by the BFS algorithm. This situation is depicted in Fig. 15 (b),

in which trace (1→3→5→7→8) is skipped since state (5) is

still satisfying the pre-condition of the incident pattern activity

to be matched but not its post-condition. Thus, identified traces

from different initial states are unique. We also bound trace’s

length to a maximum number of states.

Fig. 15: a. Skipping traces containing states that are already

visited. b. Skipping traces containing states that are satisfying

the pre-condition.

Fig. 16 shows some of the traces generated during the

instantiation of the incident pattern in Fig. 7. For each state,

we indicate the number of the incident pattern activity that

has its pre- or post-condition satisfied. For example, 2.post
indicates that the state satisfies the post-condition of activity

2; while 3.pre indicates that the state satisfies the pre-condition

of activity 3. The instantiation identifies two traces that match

the activities in the incident pattern. The other traces are not

identified as valid traces for the following reasons. First, a trace

may not satisfy all the activities pre- and post-conditions. For

example, one of the traces (A) in Fig. 16 does not satisfy the

post-condition of activity 3 (“send malware”). Second, a trace

(B) forms a cycle (i.e. “connect to workstation” & “disconnect

from workstation” actions). Third, a trace (C) exceeds the

maximum number of actions allowed —6 in this example.

Fig. 16: An instantiation of incident pattern activities in a LTS.

We implemented filters that can be applied over the gen-

erated traces to identify those that can be more relevant. The

shortest traces filter provides some insight about the traces

requiring the minimum number of actions to cause an incident

in a cyber-physical system. For example, the top trace in

Fig. 16 is one among the shortest traces. We also provide

a filter to identify traces containing the highest number of

frequent actions (i.e. actions occurring in many traces) or the

least frequent actions.

VII. EVALUATION

We evaluated correctness, scalability and performance of

our approach using two case studies inspired by real-world

systems and incidents.

Correctness. We assessed correctness by verifying that both

the extraction and instantiation techniques are sound. In other

words, the extraction technique should generate an incident

pattern that is “compatible” with the input incident instance

and the model of the cyber-physical system where the incident

supposedly occurred. While, the instantiation technique should

generate a set of incident instances that are “compatible” with

the incident pattern and a model of the cyber-physical system

where the pattern is instantiated.

Compatibility between incident pattern and incident in-

stance(s) was verified using the following criteria:

• Each activity of the incident pattern should map to one or

a sequence of different activities of the incident instance.

• The activities of the incident pattern should map to all

the activities of the incident instance in the same order.

An activity of the incident pattern maps to one or a sequence

of activities of the incident instance if:

• Each incident entity referred to in the pre- and post-

condition of the incident pattern activity can be mapped

to an asset, respectively, in the pre-condition of the first

12

activity and the post-condition of the last activity of the

sequence of activities in the incident instance. The type

of the incident entity should correspond to the class or

a superclass of the associated asset. Different incident

entities cannot refer to the same asset.

• The assets mapped to the incident entities in the pre- and

post-condition of the incident pattern activity have the

same structure (containment and connectivity relations)

of the corresponding incident entities.

If an incident pattern is instantiated in the same system in

which the incident instance occurred, it should at least generate

the same incident instance from which it was extracted. More-

over, the generated incident instances should include traces

that exist in the LTS representing the system behavior.

We only assessed scalability and performance for the in-

stantiation technique, because it uses the system LTS that can

have a large number of states and transitions.

Scalability. We assessed whether our instantiation technique

can scale for large systems, up to 100K states.

Performance. We assessed the time necessary to instantiate

an incident pattern. To improve performance we parallelized

our instantiation technique using multi-threading by allocating

state matching tasks of different incident pattern activities to

different threads.

A. Setup

We used the floor layout of two real physical buildings we

have access to. Here, for reasons of confidentiality, we refer

to the two buildings as RC1 and RC2. We modeled one of the

floors of RC1 and RC2 using our smart building meta-model.

For both buildings, we modified the floor layout by adding

various smart devices (e.g., smart lights, motion sensors, air

conditioning units) to mimic a realistic smart building setup.

We also represented the dynamic behavior of the two building

floors by generating their corresponding LTSs, also varying

their size, using BigraphER. Note that BigraphER allows

specifying a maximum number of states when generating the

LTS. For RC1 we generated LTSs ranging from 10K [34K] to

43K [207K] states [transitions]; for RC2 we generated LTSs

ranging from 10K [34K] to 100K [445K] states [transitions].

We modeled an incident instance that occurred in RC1

and extracted an incident pattern that we instantiated on RC1

and RC2. The incident instance is about an offender that

collects data transmitted over the bus network. It consists of

the following activities: enter RC1, move to a room containing

a fire alarm, connect to bus network through the fire alarm,

collect data transmitted on the bus, and analyze collected data

to identify location of critical assets. The incident pattern

consists of three abstract activities: reach a location in smart

building that contains a device connected to internal network,

gain access to the internal network via device, and collect

transmitted data. The model of the floors of RC1 and RC2, the

incident patterns and incident instances used in our evaluation

are available online4. The interested reader can replay the

extraction and instantiation techniques on smaller versions

4https://github.com/FaeqAlrimawi/SharingIncidentKnowledge

of the LTSs generated for RC1 and RC2. We evaluated our

extraction and instantiation techniques on a virtual machine

that has Ubuntu 18.04.1 LTS 64bits as operating system,

Intel® Xeon® CPU E5-2660 2.2GHz (32 CPUs), and 64GB

of memory.

B. Results

We evaluated correctness of the extraction technique by

verifying that the incident pattern generated from the incident

instance that occurred in RC1 is compatible with the incident

instance. In other words, we verified that each activity in

the generated incident pattern maps to at least one action

in the incident instance that occurred in RC1, and that the

generated activities map to all the actions of the instance.

We evaluated correctness of the instantiation technique by

checking that all generated incident instances instantiated in

RC2 are compatible with the incident pattern. We also verified

that all generated traces belong to the LTS generated for RC2.

Our results suggest that our techniques produce sound output

for the incident scenarios and systems on which they were

evaluated.

We assessed scalability of the instantiation technique by

instantiating the incident pattern in RC2 using LTSs of in-

creasing sizes (10K-100K states). Table IV shows the number

of generated incident instances for different LTS sizes. As can

be noticed from Table IV, the number of generated instances

increases as the size of the LTS increases, because, intuitively,

a bigger LTS provides additional ways in which an incident

can occur.

Moreover, although the traces generated are compatible with

the activities of the incident pattern, they may contain some

actions that are not necessary to match the activities of the

incident pattern. To filter out the traces that contain those

unnecessary actions, we mine frequent sequential patterns of

actions, i.e. subsequent actions that occur frequently inside

the generated traces. We only consider the shortest traces

that share a frequent sequential pattern of actions that has

the maximum length. This allows security administrators to

focus their attention on traces that only contain sequences of

actions that are necessary to cause a security incident. Frequent

sequential patterns of actions are identified using the ClaSP

Algorithm [22], which is implemented in an open source

data mining library called SPMF5. The number of filtered

traces found during instantiation of the incident patterns on

RC2 are shown in Table IV. We can notice a significant

reduction in the number of traces between Generated and

Filtered. However, other filtering criteria can also be adopted.

For example, considering only those traces containing actions

occurring more or less frequently among all the traces.

We evaluated performance of the instantiation technique by

measuring the time that the instantiation technique requires

to generate all the traces using an LTS of increasing size,

representing the dynamic behaviour of RC2. The execution

times for instantiating the incident pattern activities in RC2

are depicted in Fig. 17. To enhance performance, we applied

parallelization in various parts of the instantiation technique.

5http://www.philippe-fournier-viger.com/spmf/

13

TABLE IV: Output of the instantiation technique applied over

different LTS sizes of RC2. Output shown is all generated

traces and relevant ones.

LTS Instantiation Output
States Transitions Generated traces Filtered traces
10,000 33,850 720 40

20,000 73,734 2,845 90

30,000 110,569 5,403 120

40,000 158,477 10,648 160

50,000 198,771 14,777 200

60,000 252,897 23,848 240

70,000 295,160 98,720 265

80,000 349,517 143,186 305

90,000 399,319 184,269 310

100,000 445,028 216,561 340

For example, matching system states to activity conditions was

carried out by dividing all states into subsets that are then

handled by different threads. Fig. 18 shows performance im-

provement when increasing the number of threads. Execution

time is almost cut by half using 4 threads, and reaches about

a quarter the original time (i.e. without parallelism) using 16

threads.

C. Threats to Validity

There are several threats that may affect the validity of our

approach.

Some threats are related to the internal validity of our

approach. Implementation of the abstraction and instantiation

techniques can affect correctness of our results. Matching

incident pattern activities pre- and post-conditions to LTS

states can be error-prone. We use BigraphER to generate

Bigraph states, but use LibBig to match generated Bigraph

states to Bigraph conditions. BigraphER and LibBig may adopt

a different interpretation of BRS. To eliminate this threat, we

verified that the matching results obtained using BigraphER
are consistent with those obtained using the LibBig library. We

also used widely adopted tools (e.g., Choco constraint solver)

and algorithms (e.g., shortest path and breadth first search) to

implement our abstraction and instantiation techniques.

Another threat to the correctness of our instantiation tech-

nique can arise from bounding. In particular, to reduce instan-

Fig. 17: Execution time of incident pattern activities measured

over various LTS sizes (10K-100K states) of RC2.

Fig. 18: Execution time of instantiating incident pattern activ-

ities using different number of threads in RC2 with LTS of

size 10,000.

tiation complexity we limit the size of the LTS to a given

bound and we also limit the length of the generated traces.

This can lead to missing potential traces that satisfy an incident

pattern. This threat can be mitigated by defining a bounding

of the LTS, depending on the number of actions in a cyber-

physical system, and a maximum trace length, depending on

the number of activities in an incident pattern. In future work

we will investigate techniques to identify an optimal bound

for the LTS and a maximum length for the generated traces.

Other threats are related to the external validity of the

approach and, more precisely, to the generalizability of the

results to other smart buildings and cyber-physical systems.

To alleviate this threat we created the meta-model of the smart

building in collaboration with practitioners working on physi-

cal access control. The meta-model was validated by using it

to represent various smart buildings. Note that our meta-model

is extensible and can incorporate additional components (e.g.,

digital devices) if necessary using polymorphism. In future

work we will extend our system meta-model to represent other

cyber-physical systems, such as smart cities and transport. We

are confident this is feasible because these types of cyber-

physical systems can still be described in terms of containment

and connectivity relations between their components [23].

Although our work is motivated by practical problems that

organizations may face in representing and sharing security

incident knowledge, threats to validity can arise from the

practicality of our approach. In particular, modeling smart

buildings and incidents could be tedious. It requires security

administrators to be familiar with the meta-model that we

propose to represent smart buildings and incidents. To facilitate

modeling of smart buildings and incidents, we provide a

graphical designer [24]. This allows extraction of the phys-

ical structure of a building directly from its BIM (Building

Information Modeling) representation. It also allows re-using

actions that have already been defined to represent other

smart buildings. Use of this tool can greatly reduce modeling

time and effort. We are currently working on improving the

implementation of this prototype to foster its wider adoption.

Applying our approach to systems more complex than those

considered in our evaluation can still be problematic and bring

scalability issues. This limitation can be addressed by exploit-

14

ing connectivity and containment relations to decompose a

smart building into several parts (or floors), which can be

analyzed separately.

VIII. RELATED WORK

Previous work has focused on representing and analyzing

purely cyber incidents and only few approaches represent

and analyze incidents in CPSs. Current attack modeling tech-

niques (e.g., attack graphs [25], cyber kill chain [26], and

Diamond model [27]) focus on representing and analyzing

how a traditional cyber attack (e.g., denial of service) can

occur. As these techniques do not account for the interactions

between cyber and physical components, they may not be

suitable to represent and analyze cyber-physical incidents [28].

Existing resources for incident information are also focused on

cyber incidents. For example, the Common Vulnerabilities &

Exposures (CVE) [17] is a publicly available dictionary of

known cybersecurity vulnerabilities in software and devices.

Liu et al. [29] focus their work on analyzing specific attacks,

i.e. switching attacks, that can occur in the domain of smart

grids. Do et al. [30] propose an adversary model to analyze

attacks in smart homes, which exploit weaknesses (e.g., un-

encrypted communications) in common devices (e.g., smart

lights). Their adversary model consists of several capabilities:

listen (e.g., eavesdrop on local communication between a

smart light and a smartphone), transmit (e.g., transmit mes-

sages to detect the presence of some devices), modify (e.g.,

send spoofing messages), and intercept (e.g., drop messages).

Such approaches focus on providing analysis of a specific

attack in a specific system. Hence, techniques developed

cannot be applied to analyze different types of attacks that

can also happen in other application domains. Additionally,

they do not represent incident entities (e.g., motivation) that

can be useful in case an investigation is required. Hawrylak

et al. [31] propose a Hybrid Attack Graph (HAG) to model

cyber-physical attacks. Their approach produces a graph of

all possible ways a set of exploit patterns can be applied

to a system. However, the approach focuses on representing

malicious actions that exploit vulnerabilities found in some

devices and does not consider other non-malicious interactions

between cyber and physical components that can lead to

undesired state in a system.

Few approaches tackle security incident representation and

sharing. Bollé and Casey [32] propose an approach to identify

and share linkages between cyber crime cases in order to

support digital investigations. The approach employs exact

and near string similarity algorithms (e.g., Levenshtein al-

gorithm) to identify similar digital traces between different

cyber crimes. Their current implementation focuses on iden-

tifying similarities in email addresses. While it can be useful

to identify and share similar digital traces, the approach

focuses on cyber interactions, which may not be sufficient

for investigating incidents in CPSs. STIX (Structured Threat

Information Expression) [33] has been proposed as a language

for representing Cyber Threat Intelligence (CTI). CTI is shared

using TAXII (Trusted Automated Exchange of Intelligence

Information) [34]. STIX provides only a representation for

CTI without any analysis of how CTI should be extracted from

one organization or how it should be instantiated in another.

Finally, Fani and Bagheri [35] provide a light-weight security

incident ontology to represent security events. The ontology

consists of temporal, spatial, and event entities. However, their

ontology is centralized around events and do not represent

other characteristics of the space, such as containment and

connectivity relations or offender’s motive, which can be

relevant to the incident.

IX. CONCLUSIONS & FUTURE WORK

In this paper we proposed a novel approach for representing

and sharing security incident knowledge across different orga-

nizations. We suggested that knowledge of security incidents

can be represented as incident patterns. Incident patterns are

a more abstract representation of specific incident instances.

Thus they can be applied over different systems. They can

also avoid disclosing potentially sensitive information about

an organization’s assets and resources (e.g., physical structure

of a building or vulnerable devices). We also provided a

representation of the system where an incident occurs. We

provided two meta-models to represent incidents and cyber-

physical systems, respectively. To obtain incident patterns,

we proposed an automated technique to extract an incident

pattern from a specific incident instance. To understand how

an incident pattern can manifest again in other systems,

we proposed an automated technique to instantiate incident

patterns to different systems. We demonstrated the feasibility

of our approach in the application domain of smart buildings.

We evaluated correctness, scalability, and performance using

two substantive scenarios inspired by real-world systems and

incidents.
In future work we plan to apply our approach to design secu-

rity controls that can prevent or mitigate potential security in-

cidents obtained from the traces generated during incident pat-

tern instantiation. We also aim to use our approach to improve

system accountability and support forensic readiness [36],

[37], which is the ability of a system to proactively identify and

collect data that can be used in possible future investigations.

In particular, we intend to develop an automated technique to

design monitors that can collect data necessary to detect and/or

investigate the incidents represented by the traces generated

during pattern instantiation. We will assess applicability of

our approach to a wider set of scenarios, for example, when

an incident happens across different floors, and across smart

buildings. We will also extend our approach to other types of

CPS such as smart cities and transportation which can still be

characterized using containment and connectivity relationships

between their components. Finally, we are planning to increase

automation of incident reporting activities. In particular, we

plan to use natural language processing techniques to generate

attack patterns from descriptions of CAPEC patterns, and more

generally to automate incident modeling from incident reports.

ACKNOWLEDGMENT

This work was partially supported by ERC Advanced Grant

no. 291652 (ASAP), EPSRC, and Science Foundation Ireland

grants 13/RC/2094 and 15/SIRG/3501.

15

REFERENCES

[1] E. A. Lee, “CPS Foundations,” in Proc. of 47th ACM/IEEE Design
Automation Conference, 2010, pp. 737–742.

[2] G. Loukas, Cyber-physical Attacks: A Growing Invisible Threat.
Butterworth-Heinemann, 2015.

[3] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the Cyber
Attack on the Ukrainian Power Grid,” Electricity Information Sharing
and Analysis Center (E-ISAC), 2016.

[4] ——, “German Steel Mill Cyber Attack,” Industrial Control Systems,
vol. 30, p. 62, 2014.

[5] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, S. Sastry et al.,
“Challenges for Securing Cyber Physical Systems,” in Workshop on
Future Directions in Cyber-Physical Systems Security, vol. 5, 2009.

[6] K. A. Scarfone, T. Grance, and K. Masone, “SP 800-61 rev. 1. Computer
Security Incident Handling Guide,” 2012.

[7] T. Schreck, “IT Security Incident Response: Current State, Emerg-
ing Problems, and New Approaches,” Ph.D. dissertation, Friedrich-
Alexander-University Erlangen-Nuremberg (FAU), 2018.

[8] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman,
“Communication Systems for Building Automation and Control,” Pro-
ceedings of the IEEE, vol. 93, no. 6, pp. 1178–1203, 2005.

[9] T. Mundt and P. Wickboldt, “Security in Building Automation Systems
- A First Analysis,” in Proc. of the 2016 International Conference On
Cyber Security And Protection Of Digital Services (Cyber Security),
2016, pp. 1–8.

[10] B. Krebs, “IoT Reality: Smart Devices, Dumb Defaults,” https:
//krebsonsecurity.com/2016/02/iot-reality-smart-devices-dumb-defaults,
2016.

[11] A. Ahmad, J. Hadgkiss, and A. B. Ruighaver, “Incident Response
Teams–Challenges in Supporting the Organisational Security Function,”
Computers & Security, vol. 31, no. 5, pp. 643–652, 2012.

[12] M. J. West-Brown, D. Stikvoort, K.-P. Kossakowski, G. Killcrece, and
R. Ruefle, “Handbook for Computer Security Incident Response Teams
(csirts),” Carnegie-mellon univ pittsburgh pa software engineering inst,
Tech. Rep., 2003.

[13] N. Tulechki, “Natural Language Processing of Incident and Accident
Reports: Application to Risk Management in Civil Aviation,” Ph.D.
dissertation, Université Toulouse le Mirail-Toulouse II, 2015.

[14] F. Alrimawi, L. Pasquale, D. Mehta, and B. Nuseibeh, “I’ve Seen
This Before: Sharing Cyber-Physical Incident Knowledge,” in Proc. of
the 1st International Workshop on Security Awareness from Design to
Deployment, SEAD@ICSE 2018, Gothenburg, Sweden, May 27, 2018,
2018, pp. 33–40.

[15] R. Milner, “Pure bigraphs: Structure and dynamics,” Information and
computation, vol. 204, no. 1, pp. 60–122, 2006.

[16] D. Cornish, “Crimes as scripts,” in Proceedings of the inter. seminar
on env. criminology and crime analysis. Tallahassee: Florida Criminal
Justice Executive Institute, 1994, pp. 30–45.

[17] MITRE Corporation, “Common Attack Pattern Enumeration &
Classification.” [Online]. Available: http://capec.mitre.org/

[18] M. Miculan and M. Peressotti, “A CSP implementation of the bigraph
embedding problem,” dec 2014.

[19] C. Prud’homme and J.-G. Fages, “Choco Solver.” [Online]. Available:
http://www.choco-solver.org/

[20] R. Milner, The Space and Motion of Communicating Agents, 1st ed.
New York, NY, USA: Cambridge University Press, 2009.

[21] M. Sevegnani and M. Calder, “BigraphER: Rewriting and Analysis
Engine for Bigraphs,” in International Conference on Computer Aided
Verification. Springer International Publishing, 2016, pp. 494–501.

[22] A. Gomariz, M. Campos, R. Marin, and B. Goethals, “ClaSP: An
efficient algorithm for mining frequent closed sequences,” in Pacific-
Asia Conference on Knowledge Discovery and Data Mining. Springer
Berlin Heidelberg, 2013, pp. 50–61.

[23] L. Pasquale, C. Ghezzi, C. Menghi, C. Tsigkanos, and B. Nuseibeh,
“Topology Aware Adaptive Security,” in Proceedings of the 9th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2014, pp. 43–48.

[24] F. Alrimawi, L. Pasquale, and B. Nuseibeh, “On the Automated Man-
agement of Security Incidents in Smart Spaces,” IEEE Access, vol. 7,
pp. 111 513–111 527, 2019.

[25] H. S. Lallie, K. Debattista, and J. Bal, “An Empirical Evaluation of
the Effectiveness of Attack Graphs and Fault Trees in Cyber-Attack
Perception,” IEEE Transactions on Information Forensics and Security,
pp. 1–1, 2017.

[26] T. Yadav and A. M. Rao, “Technical aspects of cyber kill chain,”
in Communications in Computer and Information Science, vol. 536.
Springer Verlag, 2015, pp. 438–452.

[27] S. Caltagirone, A. Pendergast, and C. Betz, “The Diamond Model
of Intrusion Analysis,” Tech. Rep., 2013. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a586960.pdf

[28] M. Yampolskiy, P. Horváth, X. D. Koutsoukos, Y. Xue, and J. Szti-
panovits, “A language for describing attacks on cyber-physical systems,”
International Journal of Critical Infrastructure Protection, vol. 8, pp.
40–52, jan 2015.

[29] S. Liu, S. Mashayekh, D. Kundur, T. Zourntos, and K. Butler-Purry, “A
framework for modeling cyber-physical switching attacks in smart grid,”
IEEE Transactions on Emerging Topics in Computing, vol. 1, no. 2, pp.
273–285, 2013.

[30] Q. Do, B. Martini, and K. K. R. Choo, “Cyber-physical systems
information gathering: A smart home case study,” Computer Networks,
vol. 138, pp. 1–12, mar 2018. [Online]. Available: http://linkinghub.
elsevier.com/retrieve/pii/S1389128618301440

[31] P. J. Hawrylak, M. Haney, M. Papa, and J. Hale, “Using hybrid attack
graphs to model cyber-physical attacks in the Smart Grid,” in 5th ISRCS,
2012, pp. 161–164.

[32] T. Bollé and E. Casey, “Using computed similarity of distinctive
digital traces to evaluate non-obvious links and repetitions in cyber-
investigations,” Digital Investigation, vol. 24, pp. S2–S9, mar 2018.

[33] Mitre, “Standardizing Cyber Threat Intelligence Information with the
Structured Threat Information eXpression (STIX ™),” MITRE Corpo-
ration, vol. 11, pp. 1–22, 2012.

[34] OASIS Open, “Introduction to TAXII.” [Online]. Available: https:
//oasis-open.github.io/cti-documentation/taxii/intro

[35] H. Fani and E. Bagheri, “An Ontology for Describing Security Events,”
in The 27th International Conference on Software Engineering and
Knowledge Engineering, {SEKE}, 2015, pp. 455–460.

[36] R. Rowlingson, “A ten step process for forensic readiness,” International
Journal of Digital Evidence, vol. 2, no. 3, pp. 1–28, 2004.

[37] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh, and
A. Rashid, “Towards Forensic-ready Software Systems,” in Proceedings
of the 40th International Conference on Software Engineering: New
Ideas and Emerging Results. ACM, 2018, pp. 9–12.

Faeq Alrimawi received the B.Sc. degree in Com-
puter System Engineering from Birzeit University,
Palestine in 2010. In 2012, he received the M.Sc.
degree in mobile & high speed telecommunication
networks from Oxford Brookes University, UK.

He is pursuing a PhD degree in Computer Science
at Lero – The Irish Software Research Centre, Uni-
versity of Limerick, Ireland. His research interests
include software engineering, digital forensics, and
security for cyber-physical systems.

Liliana Pasquale received the PhD degree from
Politecnico di Milano (Italy), in 2011. She is a
lecturer at University College Dublin (Ireland) and
a researcher at Lero - the Irish Software Research
Centre.

Her research interests include requirements engi-
neering and adaptive systems, with particular focus
on security, privacy, and digital forensics. She has
served in the Program and Organizing Committee of
prestigious software engineering conferences, such
as ICSE, FSE, ASE, RE. She is also part of the

review committee of the IEEE TSE journal and the TOSEM journal.

16

Deepak Mehta is a principal research engineer
in Huawei Research Centre, Paris. Before joining
Huawei, he was a principal research scientist in
United Technologies Research Centre in Cork, Ire-
land. His expertise is in the design and development
of solutions for very large-scale discrete combina-
torial problems arising in different industries, e.g.,
aerospace, data centre, telecommunications, bioin-
formatics via implementing decision/optimisation
models and custom solutions. He has also worked on
machine learning-based solutions for cyber-physical

security, bioinformatics, manufacturing and generic reasoning engines. Before
moving to Industry, he was a senior research scientist in the Insight Centre
for Data Analytics, University College Cork, Ireland. During that time he also
worked on Google-ROADEF/EURO Challenge where his team was runner up
in two categories (opensource and senior). He is a co-author of 50+ technical
articles. He received his PhD in computer science from University College
Cork in 2009 for his work in constraint programming. During his PhD, he also
won the first constraint programming solver competition (in binary category).

Nobukazu Yoshioka is an associate professor at
the National Institute of Informatics, Japan. Dr.
Nobukazu Yoshioka received his M.E. and Ph.D.
degrees in School of Information Science from Japan
Advanced Institute of Science and Technology in
1995 and 1998, respectively.

His research interests include Security and Privacy
Software Engineering and Software Engineering for
Machine Learning-based Systems. He is a mem-
ber of the Information Processing Society of Japan
(IPSJ), the Institute of Electronics, information and

Communication Engineers (IEICE) and Japan Society for Software Science
and Technology (JSSST), the Japanese Society for Artificial Intelligence
(JSAI) and IEEE CS. He has been a board member of a SIG of Machine
Learning Systems Engineering since 2018, a board member of JSSST from
2011 to 2015 and an auditor of JSSST since 2017. He is a chair of IEEE CS
Japan Chapter in 2020.

Bashar Nuseibeh is Professor of Computing at
The Open University and a Professor of Software
Engineering and Chief Scientist at Lero - The Irish
Software Research Centre. He is also a Visiting Pro-
fessor at University College London (UCL) and the
National Institute of Informatics (NII), Tokyo, Japan.
He serves as Editor-in-Chief of ACM Transactions
on Autonomous and Adaptive Systems and Asso-
ciate Editor of IEEE Security & Privacy Magazine.

He chaired the Steering Committee of the Interna-
tional Conference on Software Engineering (ICSE)

and received an ICSE Most Influential Paper Award, a Philip Leverhulme
Prize, an Automated Software Engineering Fellowship, and a Royal Academy
of Engineering Senior Research Fellowship. He received an IFIP Outstanding
Service Award (2009) and an ACM SIGSOFT Distinguished Service Award
(2015). He is the recipient of a Royal Society-Wolfson Merit Award and two
European Research Council (ERC) awards, including an ERC Advanced Grant
on ‘Adaptive Security and Privacy’. He is a Fellow of the British and Irish
Computer Societies, a Fellow of the Institution of Engineering & Technology,
and a Member of Academia Europaea.

