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Abstract. Cyberattacks against Industrial Control Systems (ICS) can
have harmful physical impacts. Investigating such attacks can be dif-
ficult, as evidence could be lost to physical damage. This is especially
true with stealthy attacks; i.e., attacks that can evade detection. In this
paper, we aim to engineer Forensic Readiness (FR) in safety-critical, ge-
ographically distributed ICS, by proactively collecting potential evidence
of stealthy attacks. The collection of all data generated by an ICS at all
times is infeasible due to the large volume of such data. Hence, our ap-
proach only triggers data collection when there is the possibility for a
potential stealthy attack to cause damage. We determine the conditions
for such an event by performing predictive, model-based, safety checks.
Furthermore, we use the geographical layout of the ICS and the safety
predictions to identify data that is at risk of being lost due to damage,
i.e., relevant data. Finally, to reduce the control performance overhead
resulting from real-time data collection, we select a subset of relevant
data to collect by performing a trade-off between expected impact of the
attack and the estimated cost of collection. We demonstrate these ideas
using simulations of the widely-used Tennessee-Eastman Process (TEP)
benchmark. We show that the proposed approach does not miss relevant
data and results in a reduced control performance overhead compared
to the case when all data generated by the ICS is collected. We also
showcase the applicability of our approach in improving the efficiency of
existing ICS forensic log analysis tools.

Keywords: industrial control systems · forensic readiness · digital foren-
sics · safety checking · stealthy attacks · value of information

1 Introduction

In Industrial Control Systems (ICS), software handles safety-critical processes
that often form the core of a nation’s critical infrastructure; e.g., power gener-
ation and chemical processes. Differently from traditional IT systems, cyberat-
tacks against ICS can cause physical damage [27]. Following an attack, a digital
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forensics investigation is usually performed to identify how an incident occurred
using digital evidence [12]. However, digital evidence in ICS can be volatile, as
control devices typically feature low storage resources and can be damaged by
attacks [41]. ICS therefore need to be Forensic-Ready [24, 38, 44], i.e., capable
of identifying, collecting, and preserving, in advance, data that may be used as
evidence to investigate potential, known incidents [5].

The collection of all data at all times may not be feasible due to the large
amount of data typically generated by an ICS. This is particularly true for large-
scale, geographically-distributed ICS; i.e. those that consist of a large number of
process equipment and control devices whose layout occupies a large area — e.g.
chemical processes and power plants. Data stored in an ICS’ process historian,
while potentially useful in diagnosing anomalies, may not explain how an attack
occurred [2,23]. Most of the work in ICS forensics is geared towards post-incident
investigations [29] and a few approaches attempt to investigate potential attacks
while the system is running, performing live forensics [39].

Previous work relies on the detection of attacks to trigger data collection.
Thus, it may not be effective when an ICS is targeted by a stealthy attack, which
can take advantage of sensor noise or other physical properties of the system to
evade anomaly detectors [18]. Also, previous work does not focus on the collection
of relevant data [32] that can explain how an attack occurred and can also be
lost to damage caused by an attack. The real-time collection of such data from
control devices can incur a performance overhead, which can negatively affect
the performance requirements for safe control operations. In this paper, we aim
to engineer Forensic-Ready, safety-critical, geographically distributed ICS, which
can proactively collect relevant data to a stealthy attack. To achieve this aim, we
need to identify a trigger to data collection for stealthy attack and a technique
to identify relevant data, while reducing any performance overhead.

To trigger data collection, we rely on previous work on online safety moni-
toring under stealthy attacks [8, 9, 26]. Instead of forcing the detection of such
attacks, online safety monitoring asks whether a potential stealthy attack can
cause damage to the system given an initial physical state. While this may not
reveal such attacks, it can identify conditions under which a system can be dam-
aged and, thus, relevant data should be collected. To identify relevant data which
is also at most risk of being damaged, we propose a technique that relies on the
geographical layout of the system, safe Process Plant Layout (PPL) [36]. To
reduce the real-time data collection overhead, we propose a decision-theoretic
framework to decide whether the identified data is “worth” collecting based on
a trade-off between collection cost and the expected damage that can be caused
by the attack.

We show through extensive simulations on the benchmark Tennessee - East-
man Process (TEP) that our approach does not miss any relevant data; and
the collection of data enabled by our decision-theoretic framework has a lim-
ited impact on the controllers’ performance (execution time). Additionally, we
demonstrate a use case of our approach where the performance of Programmable
Logic Controller (PLC) log analysis tools [42] can be significantly improved. The
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rest of the paper is organised as follows: Section 2 overviews related work; Sec-
tion 3 clarifies the problem statement and summarizes the overall approach; and
Section 4 describes a running example. We detail our approach in Section 5 and
evaluate it in Section 6, before concluding the paper in Section 7.

2 Related Work

Differently from traditional IT systems, attacks on ICS may seek to cause phys-
ical damage rather than stealing or tampering with confidential data. Due to
their effect on the behaviour of physical processes, a large body of work has con-
sidered techniques from control engineering to detect attacks on ICS [18]. It has
been shown that resourceful attackers can exploit noise [19] and other control
theoretical properties [33] to evade anomaly detectors. The detection of these
so-called stealthy attacks still faces theoretical and practical limitations, such as
interference with the safety-critical operation of ICS devices [19].

Forensics in ICS faces the following challenges. The safety criticality of in-
dustrial processes and the difficulty of shutting them down for investigations
lead to strict constraints on forensic tools to limit interference with their op-
eration. The lack of documentation in most ICS devices can complicate data
acquisition tasks and may lead to a loss of data, as described by van Vliet et
al. [41]. In addition, the limited resources available in low-level devices (e.g.,
PLC’s, sensors, actuators) [7,16,25]) renders potential evidence volatile [16,29].
Therefore, ICS forensics requires different approaches than traditional IT sys-
tems. Most of the existing work in ICS forensics attempts to adapt traditional
IT forensic investigation frameworks to apply them to ICS [6,17,28]. Other work
has proposed techniques to perform live forensics, i.e., investigate potential at-
tacks while the system is running [3, 39]. In addition, several approaches have
focused on analysing and acquiring evidence from specific ICS devices, namely
PLC’s [13,35,43] and engineering workstations [21,31].

Most of existing work in ICS forensics has focused on forensic investigations
undertaken after an incident or an anomaly has occurred, as in the work of
Taveras [39]. A limited body of work has considered proactive approaches to
ICS forensics. Examples include the work by Grispos et al. [20] and Ab Rahman
et al. [1], which consider Forensic Readiness (FR) requirements in the design of
medical and cloud-based CPS, respectively. However, these approaches have fo-
cused on generic organisation-level guidelines for pre-planning incident response
measures and cannot be applied to safety-critical ICS.

Our work considers engineering FR in safety-critical ICS faced with stealthy
attacks, which can cause physical damage to an ICS and lead to the loss of
potential evidence. Although live forensics techniques [39] aim to collect data
proactively, the collection of such data is only triggered after an attack is de-
tected. Therefore, these techniques may not be effective when an ICS is targeted
by a stealthy attack. Our work has a similar aim as the approach proposed by
Alrajeh et al. [5], which generates data collection specifications to support foren-
sic readiness in a traditional IT system. However, to the best of our knowledge,
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our work is the first to address the challenges that stealthy attacks pose to ICS
forensics.

Our approach is based on a physics-based Early Warning System (EWS)
proposed by Azzam et al. [8,9] to trigger potential evidence preservation in ICS.
The approach proposed by Azzam et al. [8,9] allows the real-time identification
of conditions under which there is a possibility for a stealthy attack to cause
damage. While the proactive collection of data that may represent potential evi-
dence is suggested as possible post-warning measure, the authors do not suggest
which data should be collected. Our approach, instead, proposes a technique to
identify relevant data that should be collected based on the PPL and a formal
decision-theoretic framework.

3 Problem Statement and Overview

In this section, we clarify the problem tackled in this paper, and provide an
overview of our approach.

3.1 Problem Statement

In this paper, we seek to collect data that could explain whether and how a
stealthy attack occurred. We also aim to collect this data before it may be lost
due to the damage caused by the attack. Our problem has three main parts (P1-
P3). (P1): Since stealthy attacks can avoid detection, it is not possible to use
the alarms generated by anomaly detectors to trigger proactive data collection
or live forensics [39]. Thus, it is necessary to identify an alternative trigger for
proactive data collection. (P2): not all data generated by an ICS may require
to be collected proactively, since only a subset of such data may be at risk of
being lost due to damage. As such, there is a need for a technique to identify
what data is faced with such a risk. (P3): ICS generally operate under strict
real-time performance requirements and are expected to generate a profit; thus,
data collection activities can negatively affect the performance of the plant. To
reduce the overhead introduced by data collection, this activity should only be
performed when the cost of collection does not exceed the potential damage that
can be caused by a stealthy attack.

3.2 Overview of the Approach

Our approach to support FR in ICS presented with stealthy attacks consists of
three main steps, which address the problems (P1-P3).

1. To trigger data collection (P1), we rely on predictive safety checks of whether
a potential stealthy attack can indeed take the system into an unsafe state
and potentially cause the loss of data.
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Fig. 1. An automaton model of the proposed approach to support FR in ICS.

2. To determine what data is at the risk of being lost due to the potentially dam-
aging stealthy attack (P2), i.e., relevant data, we employ the safe PPL [36]
to identify areas of the plant that may be affected by the suspected breach.
Within these areas, we identify devices and data originating from these de-
vices that can represent potential evidence and that are at risk of being
damaged.

3. Among the set of data that may potentially be lost, we identify the ones
should be collected (P3). To achieve this aim, we propose a decision-theoretic
framework which decides to collect data only if the expected impact of the
attack, in terms of its potential effect on the system’s performance, does not
exceed the cost of collection . Accordingly, we collect a subset of relevant data
which results in a limited overhead on the system’s real-time performance.

Figure 1 shows the three steps of our approach in the form of an automaton
reflecting the real-time deployment of the proposed approach. Our main as-
sumption in this work is that data acquisition tools, such as the one suggested
by Yau et al. [42], are available to be activated whenever data should be collected
from a device of an ICS. In addition, we assume that a secure server is available
to store the collected data.

4 Running Example

We use a chemical plant setup based on the benchmark Tennessee-Eastman
Process (TEP) as a running example to describe the proposed approach. We
begin this section with a brief description of the TEP setup, and then describe
our attack scenario example.

4.1 Tennessee-Eastman Setup

The TEP is a benchmark chemical process suggested by Downs and Vogel [15]
and based on a real industrial plant that produces two liquid products from
four gaseous reactants. The TEP has been recently used as a virtual testbed
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Fig. 2. Layout of the TEP plant used in the running example.

for various works in ICS security as it represents a realistic chemical processing
environment. The process consists mainly of five major operating units: a reactor
vessel, a product condenser, a vapour-liquid separator, a recycle compressor, and
a product stripper. For the purposes of our work, we assume that the system
layout is as shown in Figure 2. Each main operating unit in the TEP is housed in
its own control room, which contains - aside from the process equipment - low-
level control devices such as sensors/actuators, PLCs, Remote Terminal Units
(RTUs) and engineering workstations. Each control room is connected over a
network to a central room that houses supervisory control servers and process
historians. In each control room, the relevant controllers’ logic is installed on the
PLCs which are in turn connected to the engineering workstations via an RTU.
The RTUs relay control data to the central control room, as in the case with
Supervisory Control and Data Acquisition (SCADA) architectures. Furthermore,
an anomaly detector located in the central control room monitors control data,
namely sensor measurements and actuator inputs, to detect anomalies due to
faults or malicious tampering.

4.2 Attack Scenario

Our example is inspired by the Stuxnet [4] and the German steel mill [27] at-
tacks. Namely, we consider the reactor stage of the TEP (area A1) which features
temperature and pressure controllers that keep these operating variables at de-
sired levels. We assume that each of these controllers is installed on a Siemens
S7 PLC, which is connected to sensors and actuators using a network that em-
ploys a standard industrial Profinet ethernet. Due to control safety constraints,



Forensic Readiness of Industrial Control Systems Under Stealthy Attacks 7

communications happening using the TCP/IP protocol are performed in plain
text without any encryption [2].

In this scenario, the attacker gains access to a network via a social engineer-
ing attack involving a fraudulent email that includes a malicious attachment.
The attack then proceeds as following: in Phase (1), the reconnaissance phase,
the attacker identifies some properties of the PLC, where temperature and pres-
sure controllers are implemented. These properties can include the make, model,
firmware, function codes, and addresses of the PLC [2]. Due to the lack of encryp-
tion, the attacker sniffs the data exchanged between the PLC and the physical
system and uses it to extract more knowledge about the system, such as its noise
properties, and details about the physics-based anomaly detector in use5.

In phase (2), and to avoid detection, the attacker chooses to slowly drive the
reactor to an unsafe state before any anomaly can be detected in the central
station. To this end, they exploit the PLC function codes identified previously
to modify the pressure control program installed on the PLC. This modification
involves applying a slowly growing bias to pressure measurements received by
the PLC, such that the controller is tricked into increasing the pressure in the
reactor to unsafe levels. The attacker can hide these deviations from the anomaly
detector using their knowledge of the system dynamics and measurement noise
properties [30] that they established during the reconnaissance phase.

A forensic investigation into the incident will likely need to recover potential
evidence from the equipment located near the reactor, namely the engineering
workstation, PLC, and RTU. This however may not be possible, as a pressure
buildup in the reactor may lead to an explosion, thus, severely damaging these
devices. For example, van Vliet et al. [41] describe the difficulties of recovering
data from a PLC that was damaged in a wind turbine fire. Thus, this data need
to be collected proactively.

ICS are typically equipped with a process historian — a proprietary server
that records process data over long periods of time. Although data recorded in
process historians are protected from damage, it is geared towards supervising
the physical process rather than detecting attacks [2,6,23]. In the TEP scenario
for example, a process historian may contain pressure measurements received
from the reactor over a certain period of time. These measurements may reveal
potential anomalies caused by an attacker. However, a forensic investigator may
not be able to infer that an attacker performed code modifications to the PLC
without having access to the PLC configuration at the time. Such data is not
typically stored in process historians but it can be collected using our approach.

5 We assume that the attacker has a vast amount of resources at their disposal to per-
form such activities. In the case of Stuxnet, it is generally agreed that the attackers
had access to such resources [27].
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5 Approach to Proactive Data Collection

We begin this section with a description of the kind of stealthy attacks that we
focus on, before detailing our approach (Figure 1) to engineering FR in ICS. We
then compile the steps of our approach in a real-time data collection algorithm.

5.1 Stealthy Sensor Attacks

We focus in this work on attacks that consist of modifying the behaviour of
the physical process in ICS. In particular, we consider stealthy attacks that
consist of slowly modifying sensor measurements while exploiting sensor noise
to evade detection. We assume that the attacker, as illustrated in Section 4, has
knowledge of the system’s model and anomaly detection procedure. Additionally,
the attacker is able to alter sensor measurements either by modifying controller
code or by accessing relevant nodes in the network. Regardless of the manner
by which the attacker performs their actions, our approach only considers the
effect of such actions on the physical process.

Stealthy sensor attacks have been widely considered in previous work [18].
We choose to focus on them due to their practicality from the point of view
of an attacker and the ease of maintaining their stealthiness as compared with
attacks on actuators [40]. Furthermore, the ICS that we consider may experience
long operational transients, which renders replay attacks more difficult to keep
stealthy [9]. A model for stealthy sensor attacks can be found in the work of
Murguia et al. [30].

5.2 Trigger for Real-time Data Collection (P1)

Real-time data collection activities can be triggered following an alarm from
an existing Anomaly Detection System (ADS) [39]. However, in the case of the
stealthy attacks we are concerned with, such a trigger may not be available as
the resourceful attacker may evade the existing ADS and may be able to cause
damage before any such alarm is raised.

To mitigate this problem, we propose instead a trigger that relies on online
safety monitoring under attacks. Instead of attempting to detect stealthy at-
tacks, this line work seeks to proactively check in real-time for conditions under
which a potential stealthy attack can cause damage to the system [8,9,26]. This
can be useful to guide certain proactive measures, including the collection of
potential evidence. Of the approaches proposed in the literature, we adopt the
one proposed by Azzam et al. [8, 9] where safety checks are used to compute a
so-called suspicion metric reflecting the probability of damage taking place due
to a stealthy attack.

The suspicion metric combines two physics-based preliminary indicators to
warn in advance of potential damage: (i) feasibility of a stealthy attack, defined
as its ability to drive the system into the unsafe operating region without getting
detected; and (ii) proximity of the system to unsafe operating region. These two
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indicators are then expressed in terms of a reachability problem, where reach-
able sets are approximated using ellipsoids computed through a linear matrix
inequalities setup. The size of the reachable set and of its intersection with a
predefined set of unsafe states, as well as the approximate time to reach the
unsafe set are then combined to compute the suspicion metric. Due to space
limitations, we refer the reader to the authors’ work [8, 9] for more details on
their approach.

The reasons for adopting the approach by Azzam et al. [8, 9] are as follows:
(1) The online safety monitoring algorithm is efficient and can scale well with
complex systems. (2) The algorithm is tailored to systems that can be modelled
as Linear Time-Invariant (LTI) which is a widely used modelling paradigm in
practice, and can be used to model the TEP in our running example. (3) The
probability of damage, given by the suspicion metric, can be used to estimate
the impact of the suspected attack.

The approach by Azzam et al. [8, 9], which is already instantiated for the
TEP, can raise warnings having two different levels of criticality, based on the
likelihood of damage taking place given by the suspicion metric. The first is a
low-criticality warning where the system may reach an unsafe state if it is under a
stealthy sensor attack, but is far from these states. The second is a high-criticality
warning where the system is dangerously close to the unsafe operating region.
The first level of warning suggests that there is sufficient time to collect potential
evidence before a potential failure occurs, and, as such, it can be a suitable
trigger for proactive data collection. The second warning level suggests the need
for immediate safety measures, such as engaging a backup controller [14]. In this
paper, we focus on the case where a low-criticality warning is raised and we
consider it as a suitable trigger for proactive, real-time data collection activities.

5.3 Identifying Relevant Data (P2)

Of the large volume of data generated by an ICS, we would like to only collect
data that is likely to be lost due to damage caused by a potential stealthy
attack. We assume that this data is more likely to constitute potential evidence
of such an attack, and as such is relevant [32] to our proactive data collection
activities. In this paper, since we are concerned with attacks that affect the
physical process, we only focus on data originating from control devices that are
at the lowest level of the ICS network architecture [16,25]. Namely, we focus on
PLC’s and on sensor measurements. We denote by O = {o1, . . . , om} the set of
the system’s output variables and by PLC = {PLC1, . . . , PLCnplc

} the set of
PLC’s in the system. Table 1 summarizes the kind of data we can collect from
these devices. For each PLCi, we denote by Config[PLCi] the data we can
collect from PLCi.

Unlike data found in process historians, the data that we propose to col-
lect in real-time (Table 1) is assumed to be acquired using dedicated forensic
tools, which can help explain how an attack may have happened [2, 23, 42]. Al-
though some sensor measurements that we propose to collect can be collected
by a process historian, other sensor measurements are collected using network
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Table 1. Potentially relevant data (for the stealthy attack that we consider) at the
control level of the ICS network architecture and ways to collect it in real-time [16,25].

Source Data Ways to Collect in Real-time

Network
Sensor measurements of operating

variables in O = {o1, . . . , om}

Network taps and widely available
tools like Wireshark and

TCPdump

PLC’s

Memory values, states, ladder
logic, inputs/outputs (we

aggregate this data and denote it
as Config[PLCi] for a given

PLCi)

The proprietary software of the
PLC [23] and PLC data

acquisition tools (e.g., [42])

forensic tools that include information, for instance, about source and target IP
addresses. This information may be helpful in understanding how a potential
attack occurred — e.g., tracing IP addresses to an infected host machine.

In a geographically distributed ICS, the layout of process equipment is de-
signed by taking into account safety properties. Safety-critical process equip-
ment, such as reactors, have an associated explosion energy, a measure of the
energy that would be released should a safety failure take place within the equip-
ment. This measure determines safe distances that separate different process
equipment such that physical damage in one piece of equipment has a low proba-
bility of affecting another safety-critical physical process. These energy measures
and associated distances are then used to design the layout of the process con-
trol system. The result is a partition of the land area available for the plant into
different sub-areas where safety-critical equipment should be placed, as shown
in Figure 2 [36]. In the process industry this design-time activity is referred to as
safe Process Plant Layout (PPL) [36]. To reduce the chance of damage spreading
from one area into another, protection devices can be installed [34]. Note that
such layout design does not only account for damage that could result from an
explosion, but also from other incidents like chemical spills and fire.

In the TEP example (Figure 2), we assume that the equipment running the
safety-critical processes is geographically distributed according to a safe PPL
design [36]. In this case, if damage occurs in the reactor for instance, then we
assume that the damage will be restricted to the control devices located in
the vicinity of the reactor (e.g., a PLC implementing the reactor’s temperature
control), and will not extend to devices elsewhere. In this sense, we can define
the set of process sub-areas as a partition of the set of control devices PLC.
Namely, let6 A = {A1, A2, . . . , AnA

} ⊂ 2PLC be the set of the ICS sub-areas,
then Ai 6= ∅, Ai ∩Aj = ∅,

⋃
iAi = PLC; ∀i, j ∈ {1, 2, . . . , nA}, i 6= j.

In such ICS, safety constraints are usually expressed as linear combinations
of output variables. Namely, let φ := Σm

i=1aioi♦b be a safety constraint, with

6 Given a set A, 2A denotes its power set.
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Table 2. Safety constraints of the TE case study and affected plant area(s) [15].

Constraint
Label

Output Variable(s)
[var(φ)]

Constraint
Formula

Affected Plant
Area [safe(φ)]

φ1 Reactor Pressure,o1 o1 ≤ 2895kPa A1

φ2 Reactor Temperature o2 o2 ≤ 150◦C A1

φ3 Reactor Level o3 o3 ≤ 21.3 m3 A1

φ4 Reactor Level o3 o3 ≥ 11.8 m3 A1

φ5
Product Separator Level

o4
o4 ≤ 9.0 m3 A3

φ6
Product Separator Level

o4
o4 ≥ 9.0 m3 A3

φ7 Stripper Base Level o5 o5 ≤ 6.6m3 A4

φ8 Stripper Base Level o5 o5 ≥ 3.5m3 A4

ai, b ∈ R, ♦ ∈ {≥,≤}, and oi ∈ O, and let Φ be the set of safety constraints in
a given system. Damage in a sub-area Ai can happen due to a violated safety
constraint φi ∈ Φ. We denote by safe(φi) ∈ A the plant area or the subset of
control devices that will be affected by the violation of the safety constraint
φi, and by var(φi) the subset of output variables associated with φi. This is
normally determined by process engineers at the PPL phase [36]. Table 2 lists
the main safety constraints of the TEP and associates each constraint with the
plant area (Figure 2) where the corresponding safety-critical process is located.
For example, constraint φ1 sets an upper limit on the pressure inside the reactor.
Since the reactor is located in area A1, a violation of this constraint could lead
to damaging the equipment in A1; i.e., safe(φ1) = A1.

Recall that the proposed data collection activity is initiated by a low-criticality
warning at a time instant k from predictive safety checks that return a subset
Φv(k) ⊆ Φ of safety constraints that may be violated in the future [8,9]. Conse-
quently, given this subset of safety constraints, we can use Table 2 to determine
a set of relevant device and network data (Table 1) at time k, as follows:

Config[PLC]rel(k) = {Config[PLCi] | PLCi ∈ safe(φ)∀ φ ∈ Φv(k)} (1)

Orel(k) = {o ∈ var(φ) ∀ φ ∈ Φv(k)} (2)

Consequently, the set of relevant data that we are in a position to collect at a
time k is Drel(k) = Config[PLC]rel(k) ∪ Orel(k).

5.4 Deciding Which Data Should Be Collected (P3)

Real-time data collection activities are generally associated with a certain cost.
Additionally, our original predictive safety checks are uncertain as they return a
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probability of damage, as given by the suspicion metric s(k) [8] at a time instant
k. From this observation, it is necessary to decide whether to collect each data in
Drel(k) based on a trade-off between the expected impact of the attack and the
collection cost associated with each data in Drel(k). Namely, we seek to select a
subset of data to collect, Dcol(k) ⊆ Drel(k). To achieve this trade-off, we propose
a decision-theoretic framework based on the Value of Information (VoI) analysis.
Our main assumption in the development of this framework is that each of the
data identified in Drel(k) is equally likely to constitute potential evidence. For
example, ifDrel(k) consists of a pressure sensor measurement and a configuration
of the PLC implementing the pressure controller, then we assume that it is
equally likely that the attacker performed their attack by either changing the
code of the PLC (Section 4) or intercepting and modifying the pressure sensor
measurement. Thus, the only trade-off we are concerned with is the one between
the expected impact of the attack and the cost of data collection.

VoI Representation. We assume that the ICS, represented as Π(θ), operates
in nominal conditions under a certain performance measured by a revenue W (θ)
that depends on some system parameters grouped in θ. For example, the TEP’s
performance is usually measured by the revenue resulting from the amount of
chemical product produced [15, 37]. The operational cost of Π(θ) is denoted by
C(θ), and can be estimated based on a variety of parameters; such as the amount
of reactants consumed in the TEP case. In this paper, we restrict this cost to
the cost of data collection, i.e., collecting the data in the set Drel.

Under a given parameter setting θ, the value (profit) of Π(θ) is given by
V (θ) = W (θ)−C(θ). However, due to uncertainties associated with parameters
θ, we must use an expected parameter estimate to compute V (θ). Consequently,
we consider the expected value (profit), denoted by E[V (θ)], under expected
parameters E[θ].

Suppose that we predict that a potential stealthy attack, may bring the
system into a new operating mode with E[V (θ̃)] < E[V (θ)], by causing damage
to one or more of the plant areas Ai (i.e., we are presented with the trigger
described in Section 5.2). Then we can ask whether it is worthwhile to collect
certain relevant data (as identified in Drel(k)) that may allow us to reveal a
breach like the one illustrated in Section 4. Namely, we may want to collect
a given δi ∈ Drel(k) only if its collection cost does not exceed the potential
reduction in the value or the revenue of the system’s operation (i.e., attack
impact) if the predicted stealthy attack is successful. The change in this expected
value is given by:

∆V (θ̃, θ) = E[V (θ̃)]− E[V (θ)] = E[W (θ̃)− C(θ̃)]− E[W (θ)− C(θ)] (3)

As a simplifying assumption, we can take the cost of data collection under
nominal conditions C[θ] as 0. On the one hand, if we choose not to collect any
data and subsequently not attempt to prevent the damage from the breach,
then C[θ̃] = 0 and in this case |∆V (θ̃, θ)| = |E[W (θ̃) − W (θ)]| = E[|∆W |].
On the other hand, if we choose to collect data that can help us identify the
location of the breach and prevent damage from happening, then we can assume
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that W (θ̃) = W (θ) and |∆V (θ̃, θ)| = E[C(θ̃)]. In other words, the collection of
data that may reveal a suspected breach is worthwhile only if the expected cost
of collection does not exceed the expected reduction in the operating revenue
(performance), E[|∆W |], i.e., the expected impact of the attack.

Example. Consider the TEP system generating a value of 0.8 under nominal
operation. Our online safety monitor predicts at a time instant k that a potential
breach may be able to cause damage to two out of the five plant areas in A with
a probability (given by the suspicion metric) of s(k) = P (damage) = 0.4. If this
happens, then the new revenue of operation is 0.48. As such, the new expected
revenue of operation is given by:

E[W̃ ] = P (damage)(W |damage) + P (¬damage)(W |¬damage)

= 0.4× 0.48 + 0.6× 0.8 = 0.612
(4)

Hence, the expected reduction in revenue of operation (i.e., attack impact) is
E[|∆W |] = 0.8 − 0.612 = 0.188. This is the maximum we will “pay” to identify
the location of the suspected breach, i.e., collect each of the data in Drel(k).

Cost of Data Collection. In the set Drel(k) that we identified in Section 5.3,
the collection of each of the data δi ∈ Drel(k) is associated with a certain cost
C(δi). This measure of collection cost can be estimated, for example, based on
the capabilities of the existing data acquisition tools. Namely, if the collected
data is to be stored in some secure server, one could set a limit on the total
size of data that we can collect at a given time instant k. Then, we can define a
collection cost C(δi) as the ratio of the space occupied by δi to the size limit for
data collection at a time k. In a similar fashion, this cost measure can account for
bandwidth limitations and data transmission delays that may arise in large-scale
geographically-distributed ICS. Regardless of the exact definition of C(δi), we
propose that this measure be a dimensionless number in the same range as the
measure of revenue of operation (W (θ)), so we can soundly perform the trade-off
as illustrated in the previous example.

Going back to the previous example, assume that the identified relevant
data consists of the pressure sensor measurement o1 and the ladder logic of
the PLC implementing the pressure controller, Config[PLC1]. Since a single
sensor measurement may occupy significantly less space that a PLC ladder logic
configuration, we assume that the cost of collecting o1 is C(o1) = 0.02 and that
of Config[PLC1] is C[Config[PLC1]] = 0.2. Since the maximum we will pay
to identify the location of the suspected breach is 0.188, then we can conclude
that o1 is worth collecting while Config[PLC1] is not.

5.5 Real-Time Proactive Data Collection

We implement the three steps of our approach proposed to collect relevant data
in Algorithm 1. The execution of Algorithm 1 at a time instant k is triggered
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Algorithm 1 Proactive Real-time Collection of Relevant Data

Inputs: A subset of potentially violated constraints Φv(k); the suspicion metric
s(k) = P (damage)
Parameters: collection cost of potential data types C(δi), ICS operating value
under nominal conditions (W |¬damage)
Outputs: Dcol(k) (a set of data to collect)

1I for all φ ∈ Φv(k) do
2I Config[PLC]rel](k)← Config[PLC]rel](k) ∪ safe(φ)
3I O(k)rel ← Orel(k) ∪ var(φ)
4I end for
5I Drel(k)← Orel(k) ∪ Config[PLC]rel](k)

6I E[W̃ ]← s(k)(W |damage) + (1− s(k))(W |¬damage)

7I MaxCollectionCost ← (W |¬B)− E[W̃ ]
8I for all δrel ∈ Drel(k) do
9I if C(δrel) < MaxCollectionCost then

10I Dcol(k)← Dcol(k) ∪ {δrel}
11I end if
12I end for

by a low-criticality warning from the online safety monitor [8, 9] which returns
the suspicion metric s(k), i.e., probability of damage taking place, in addition
to the potentially violated constraints Φv(k) (in the future). We first use the
safe PPL and Table 2 to identify data that is more likely to be lost due to the
predicted damage. We then perform the VoI analysis on the identified relevant
data in Drel(k). First, we estimate the expected reduction in revenue (impact)
from the predicted attack, as illustrated in the previous example. We use this
computed impact as the maximum we will pay to collect a certain δrel ∈ Drel(k)
and subsequently make our collection decision given an associated C(δrel).

Note that the estimation of the revenue if damage happens, (W |damage), can
be performed using the number of areas Ai that are predicted to be damaged by
the online safety monitor. In our numerical example, the safety monitor predicted
that two out of five areas in A may be damaged. As such, we can estimate a
2/5 = 40% reduction in the original revenue under nominal operation. Note that
a better estimate can be obtained by incorporating some process engineering
knowledge about the contribution of each plant area to the revenue; however,
such considerations are beyond the scope of the present work.

6 Evaluation

This section discusses our evaluation strategy, describes the testbed that we use
in the evaluation, and presents the results.

6.1 Overview

Our evaluation does not include a discussion of the trigger for data collection
(P1), which is based on previous work [8,9]. In this paper, we evaluate the rele-
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vance of the collected data (P2), and assess the reduction in control performance
overhead obtained using our decision-theoretic framework (P3). We then demon-
strate a use case of our approach using an attack scenario. This evaluation is
consistent with previous work on FR [5]. While Alrajeh et al. [5] employed exist-
ing datasets to perform their evaluation, we resort in our work to simulations of
a virtual realistic testbed. The reason for using simulations stems from the lack
of datasets that we can use to evaluate our work. To the best of our knowledge,
datasets on ICS security (e.g., [11]) are not constructed to proactively collect
data that can be relevant to identify how a stealthy attack occurred. Existing
datasets are instead aimed to train and test statistical models for attack detec-
tion. Thus, they are not suitable to evaluate our approach. Data collected by
process historians, as illustrated in Section 4, may not explain how an attack
occurred. Thus, we avoid a comparison of our approach with process historians.

6.2 Testbed Description

We employed a simulation of the TEP implemented in MATLAB/Simulink by
Bathelt et al. [10] based on the control architecture designed by Ricker [37]. We
augmented the simulation with an implementation of the algorithm proposed by
Azzam et al. [8], and the addition of Algorithm 1 7. The simulation also includes
blocks to simulate networked behaviour and data transmission delays according
to the setup given in [8]. To simulate the process of data collection, we augment
the controllers in the TEP simulation with logging capabilities. Namely, when
Algorithm 1 identifies the set Dcol(k), the corresponding controllers generate
a log in a json format. In particular, we assume that each of the controllers
designed by Ricker [37] are implemented on a PLC. As such, we simulate the
collection of data from these devices by adopting a log structure that mimics the
logging of PLC ladder logic configurations (e.g., [43]). Namely, each log entry
consists of a timestamp, sensor measurements received, and details about the
controller configuration, in addition to the output of the controller (actuation
signal). Since each controller in the architecture proposed by Ricker [37] is a
discrete-time Proportional-Integral (PI) controller, the controller configuration
is represented by the values of the coefficients of the proportional and integral
terms in addition to the sampling time. For sensor measurements, the corre-
sponding sensors simply generate a json log entry that includes the timestamp,
the value, and the name of the sensor measurement (Table 2). We performed
all the simulations described in this paper on a machine with an Intel i7-9750H
CPU clocked at 2.6 GHz with 16 GB of memory.

6.3 Relevance and Overhead Reduction

To assess the relevance of collected data and the reduction in performance over-
head resulting from data collection, we adopt a large number of randomised

7 These implementations and the scripts used to perform the evaluation can be found
at https://github.com/ul-res/ics-forensic-readiness.
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Table 3. Simulation results.

Test Result

Relevance (percentage of cases where data at risk of being
damaged is missed)

5.8 %

Average controllers’ execution time with Algorithm 1 1.5× 10−3 secs

Average controllers’ execution time with all data collection
enabled

2.3× 10−3 secs

Average reduction in log size when using Algorithm 1 30.8 %

(Monte Carlo) simulations. In each simulation, we randomise the operating lev-
els of the TEP (i.e., set-points for pressure, temperature, reactor level, etc.), and
we choose attacked sensors randomly. For relevance, we check in each simulation
whether any data that was lost to damage by the attack was missed by the set
identified in step (P2) (Dcol(k)).

The decision-theoretic framework proposed in step (P3) already ensures, by
design, that the collection of data is enabled only when the expected reduction
in system performance exceeds the cost of data collection. Thus, we do not
compare the revenue before and after data collection. Instead, we showcase how,
as a result of the decision-theoretic framework, there is a limited effect on the
system’s performance. We compare the average execution time of controllers
under forensic logging enabled by Algorithm 1, with the case where forensic
logging is enabled at all times from all controllers. We also present the average
reduction in terms of the number of log entries between the two scenarios. In
addition, and as a reference, we present the average execution time of controllers
in the case where no logging is enabled. Although our logging mechanism is a
simplified version of data acquisition tools, the comparison of average controller
execution times between the aforementioned scenarios serves to give an idea of
the potential performance improvement brought by our approach with actual
data acquisition tools. For each of the testing scenarios previously described, we
ran a total of 1000 simulations. Results are shown in Table 3.

Discussion. The low percentage of data missed by the proposed algorithm as
shown in Table 3 demonstrates the capability of our approach to identify relevant
data (P2), thus, limiting the loss of potential evidence due to damage by a
stealthy attack. Additionally, the use of Algorithm 1 with the proposed decision-
theoretic framework (P3) results in reducing the average controllers’ execution
time by around 35%, compared with the case where logging was performed from
all controllers at all times. This is consistent with the 31% reduction in the
size of logs due to Algorithm 1. These results show that the proposed decision-
theoretic framework enables the collection of data in a way that minimises the
interference with control operations.
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Fig. 3. Real and received sensor measurements, anomaly detector metric, and results
from the real-time PLC code checking applied with the proposed approach (1 = de-
tected code modification, 0 = otherwise).

6.4 Use Case: Supporting PLC Log-based Live Forensics

To demonstrate a potential use-case of our approach, we consider tools that can
perform live forensics in ICS, i.e., investigating potential attacks while the system
is running. Due to the safety-criticality of ICS and the difficulty associated with
shutting them down, methods for live forensics activities [3] have been proposed
to avoid such difficulties. One important requirement for such methods is that
they need to minimise interference with the safety-critical control operations [16].
In the previous section, we showed how our approach reduces the number of PLC
logs that need to be collected, hence reducing the effect of logging mechanisms
on the controllers’ execution time. In this section, we further show how our
approach can be used to improve the performance of live forensics operations,
due to the fact that we only consider relevant data and we account for the
system’s performance while guiding logging activities.

A class of ICS live forensics methods [42] consists of investigating PLC logs
to check for any malicious modification to their code. To showcase the increase
in performance of such methods, we revisit the Stuxnet-inspired attack scenario
introduced in Section 4. In the second phase of the attack, the attacker modifies
the function codes in the PLC controlling the reactor pressure in a way that
drives the reactor slowly beyond safe operating regions. We run a simulation
of such an attack by introducing malicious code to the controller handling the
reactor pressure. We augment the implementation of the Algorithm 1 and the
logging mechanism described previously with an implementation of the technique
proposed by Yau and Chow [42] based on the log structure that we use in our
simulations. Whenever controller logs are generated, we compare the logged con-
trol output with the one expected by the originally designed control law (in [37]).
If the two values differ substantially, i.e., more than a pre-defined threshold, the
code checking detects the presence of a code modification (Figure 3).

Figure 3 shows a plot of the received and actual (real) pressure measure-
ments from the reactor under an integrity attack on pressure sensor, along with
the anomaly detector’s detection metric. In addition, we show a plot of the re-
sults from the code modification checks performed to the pressure controller logs
collected according to our approach. Namely, we plot the results from the code
checking vs. the timestamps of the collected logs. We also analyse the perfor-
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Table 4. PLC Code Checking Performance.

Test Average Real-time Execution (seconds)

With Algorithm 1 0.0013

Without Algorithm 1 0.0277

mance of PLC code checking under two cases: 1) the checking is performed on
logs generated according to Algorithm 1 and 2) the checking has to consider logs
from all controllers at each time instant (Table 4). The results were averaged
over a ≈ 30-hour simulation, equivalent to around 60000 real-time checks given
the system’s 1.8 second sampling time.

Discussion. Figure 3 shows that our approach enabled the collection of logs
from the reactor’s pressure controller, where code checking was able to detect
modification of the PLC code well before any alarm was raised by the existing
anomaly detector. While our approach only collected logs from the pressure
controller at the start of the attack, it enabled the detection of code modifications
much earlier than the existing anomaly detector. In the case where logs are
needed for the duration of attacks, Algorithm 1 can be modified such that it
can be overridden to ensure the collection of logs as long as the code checking
returns with the result that the code is indeed modified.

The benefit of performing PLC code checking under the proposed approach
is highlighted with the results shown in Table 4. Under this approach, the av-
erage real-time execution time of code checking was reduced by more than an
order of magnitude. In ICS, live forensics is used more often than post-mortem
forensics [16] to avoid the high-costs of shutting down the process. The perfor-
mance enhancement brought about by the proposed approach has the potential
of reducing the risk of interfering with the real-time performance constraints of
safety-critical ICS when live forensics is performed, especially considering that
devices such as PLC’s feature low computational resources.

Based on the results obtained in this section, it can be expected that our
approach may also improve the performance of other log-based attack detection
techniques. As our approach specifies when and which data is worth collecting at
a given time, this reduces the amount of logs that need to be processed by such
techniques. For example, the technique presented by Hussain et al. [22] relies on
converting logs from different ICS components into a petri net representation in
order to detect anomalies based on existing process knowledge. In the future, it
may be worth investigating how the reduction in log sizes can affect the perfor-
mance of such conversion, and whether it can help increase the precision of the
anomaly detection technique. Our approach could also use machine learning to
improve the selection of logs for this purpose.
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Potential Limitations. The use case presented in this section has highlighted
a potential limitation with our approach: data collection may be triggered for
a long time even if no attack was taking place, as shown in Figure 3. However,
live forensics tools may serve as a heuristic to determine whether proactively
collected data is to be preserved or discarded. For instance, in our use case
scenario, the PLC logs collected when no attack was taking place as shown by
the code checking could be discarded in order to save storage resources. Future
work could look into more ways in which data collected due to our approach can
be handled in order to optimize storage capabilities.

Another potential limitation with our approach is that it focuses on a specific
type of attacks on ICS. While the model we considered is widely studied, further
work would be needed to consider a variety of other attacks. The approach
presented in this paper serves as a framework to consider data collection for
future investigations of other types of attacks. Namely, one can have a certain
metric reflecting a “probability of harm”, similar to the suspicion metric, for
other attack types. Our framework for relevant data identification and selection
can then be used based on the new metric.

7 Conclusion

In this paper, we propose an approach to engineer Forensic-Ready safety-critical,
geographically distributed ICS presented with the threat of stealthy attacks tar-
geting physical processes. We designed an approach to proactively collect rele-
vant data before they are lost due to damage caused by a stealthy attack. In the
absence of potential alarms about stealthy attacks from anomaly detectors, our
approach considers an alternative trigger for data collection based on predictive
safety checks. Then, using the plant layout and the constraints that are predicted
to be violated, we identify data that are most likely to be lost due to damage.
We also propose a decision-theoretic framework that enables the collection of
data only when collection cost does not exceed the expected reduction in the
system’s performance due to the predicted attack.

Our evaluation of the proposed approach has shown that it ensures the rel-
evance of collected data and incurs a limited control performance overhead.
Furthermore, we demonstrated the advantage of such an approach in improving
the efficiency of existing live forensic log analysis techniques. In future work we
will incorporate process engineering knowledge to better estimate the potential
impact of a predicted attack in our decision-theoretic framework. We will also
evaluate our approach on a live testbed using data acquisition tools, and in-
vestigate how the approach can help improve the performance and efficiency of
attack detection techniques.
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